Suppr超能文献

多孔二甲氧基柱芳烃编织β-环糊精共聚物的合成及其对有机微量污染物的高效吸附。

Synthesis of porous dimethoxypillar[5]arene knitted β-cyclodextrin copolymers for efficient adsorption of organic micropollutants.

机构信息

School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China.

School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224002, PR China.

出版信息

Carbohydr Polym. 2023 Jun 15;310:120719. doi: 10.1016/j.carbpol.2023.120719. Epub 2023 Feb 20.

Abstract

Herein, through knitting benzylated β-cyclodextrin (BnCD) by dimethoxypillar[5]arene (P[5]), porous copolymers (P[5]-BnCDs) containing two kinds of macrocycles were synthesized with yields not <97 %. The molar ratio of P[5]/BnCD greatly influenced the P[5]-BnCDs' porosity and adsorption performance. When the molar ratio of P[5]/BnCD was 4/1, the P[5]-BnCD (4-1), demonstrated a surface area up to 515.95 m/g and showed fast adsorption kinetic, high adsorption capacity and good reusability towards the model organic micropollutants (OMPs). The adsorption fitted well with the pseudo-second-order and the Langmuir models, while the thermodynamic studies revealed spontaneous physisorption process. The adsorption mechanism was dominant by host-guest and hydrophobic interactions and the adsorption at environmentally relevant concentrations experiments showed the practicality and superiority in extraction of the OMPs at μg/L level. This study paves a way for the development of versatile porous organic polymers with multiple macrocycles for efficient removal of OMPs from water.

摘要

在此,通过二苯并[24]冠-8(P[5])与苄基-β-环糊精(BnCD)编织,合成了两种大环共存的多孔共聚物(P[5]-BnCDs),产率不低于 97%。P[5]/BnCD 的摩尔比对 P[5]-BnCDs 的孔隙率和吸附性能有很大影响。当 P[5]/BnCD 的摩尔比为 4/1 时,P[5]-BnCD(4-1)的比表面积高达 515.95 m/g,对模型有机微污染物(OMPs)具有快速吸附动力学、高吸附容量和良好的可重复使用性。吸附符合准二级和朗缪尔模型,而热力学研究表明这是一个自发的物理吸附过程。吸附机理主要是主客体和疏水相互作用,在环境相关浓度下的吸附实验表明,在μg/L 水平下从水中提取 OMPs 的实际性和优越性。本研究为开发具有多种大环的多功能多孔有机聚合物,以有效去除水中的 OMPs 开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验