Navalón-López María, Dols-Perez Aurora, Grijalvo Santiago, Fornaguera Cristina, Borrós Salvador
Grup d'Enginyeria de Materials (GEMAT) Institut Químic de Sarrià (IQS) Universitat Ramon Llull (URL) Via Augusta 390 08017 Barcelona Spain
Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST) C/Baldiri i Reixac 11‐15 08028 Barcelona Spain.
Nanoscale Adv. 2023 Feb 6;5(6):1611-1623. doi: 10.1039/d2na00800a. eCollection 2023 Mar 14.
Oligopeptide end-modified poly(β-amino ester)s (OM-pBAEs) offer a means for the effective implementation of gene therapeutics in the near future. A fine-tuning of OM-pBAEs to meet application requirements is achieved by the proportional balance of oligopeptides used and provide gene carriers with high transfection efficacy, low toxicity, precise targeting, biocompatibility, and biodegradability. Understanding the influence and conformation of each building block at molecular and biological levels is therefore pivotal for further development and improvement of these gene carriers. Herein, we unmask the role of individual OM-pBAE components and their conformation in OM-pBAE/polynucleotide nanoparticles using a combination of fluorescence resonance energy transfer, enhanced darkfield spectral microscopy, atomic force microscopy, and microscale thermophoresis. We found that modifying the pBAE backbone with three end-terminal amino acids produces unique mechanical and physical properties for each combination. Higher adhesion properties are seen with arginine and lysine-based hybrid nanoparticles, while histidine provides an advantage in terms of construct stability. Our results shed light on the high potential of OM-pBAEs as gene delivery vehicles and provide insights into the influence of the nature of surface charges and the chemical nature of the pBAE modifications on their paths towards endocytosis, endosomal escape, and transfection.
寡肽末端修饰的聚(β-氨基酯)(OM-pBAEs)为在不久的将来有效实施基因治疗提供了一种手段。通过所用寡肽的比例平衡对OM-pBAEs进行微调,以满足应用需求,并为基因载体提供高转染效率、低毒性、精确靶向、生物相容性和生物可降解性。因此,在分子和生物学水平上了解每个构建块的影响和构象对于这些基因载体的进一步开发和改进至关重要。在此,我们结合荧光共振能量转移、增强暗场光谱显微镜、原子力显微镜和微尺度热泳技术,揭示了OM-pBAE/polynucleotide纳米颗粒中单个OM-pBAE成分及其构象的作用。我们发现,用三个末端氨基酸修饰pBAE主链会为每种组合产生独特的机械和物理性质。基于精氨酸和赖氨酸的混合纳米颗粒具有更高的粘附特性,而组氨酸在构建体稳定性方面具有优势。我们的结果揭示了OM-pBAEs作为基因递送载体的巨大潜力,并深入了解了表面电荷性质和pBAE修饰的化学性质对其胞吞作用、内体逃逸和转染途径的影响。