Suppr超能文献

用于协同实现高性能锂金属电池的工程化阵列图案化阴极和阳极

Engineering Array-Patterned Cathodes and Anodes for Synergistically Enabling High-Performance Lithium Metal Batteries.

作者信息

Wang Hua, Li Jianbo, Huang Yunhui, Li Zhen

机构信息

State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15525-15532. doi: 10.1021/acsami.3c00379. Epub 2023 Mar 16.

Abstract

Critical challenges such as safety and cyclability concerns resulting from the uncontrollable dendritic lithium (Li) growth, especially during the fast charging/discharging process, have seriously hampered the commercialization of Li metal batteries (LMBs). Here, a novel array-patterned LiFePO (LFP) cathode prepared via a simple, scalable calendaring method is developed to enable highly stable Li metal anodes with patterned ditches and bulges during the cell assembling process. Both the structured electrodes provide a remarkably increased electroactive surface area to lower the current density locally, facilitating Li-ion transport kinetics and homogeneous Li plating/stripping. Due to the long-term internal pressure in the cell, the structured LFP and Li electrodes can maintain their original structure during sustained cycling. Such distinctive electrode architectures and cell design synergistically enable excellent rate capability with a discharge capacity of up to 128 mA h g at a high current density of 9 mA cm and impressive cycling stability, with 89.6% capacity retention after 300 cycles at 1.5 mA cm. Moreover, ultrasonic transmission mapping is carried out and demonstrates no gas behavior in operating modified Li||LFP pouch cells over prolonged cycling. This simple fabrication method can potentially be applied to many other active materials to enable practical LMBs with high performance.

摘要

诸如不可控的树枝状锂生长所导致的安全性和循环稳定性问题等关键挑战,尤其是在快速充电/放电过程中,严重阻碍了锂金属电池(LMBs)的商业化。在此,通过一种简单、可扩展的压延方法制备了一种新型阵列图案化的磷酸铁锂(LFP)阴极,以便在电池组装过程中实现具有图案化沟槽和凸起的高度稳定的锂金属阳极。这两种结构化电极都显著增加了电活性表面积,以局部降低电流密度,促进锂离子传输动力学以及锂的均匀沉积/剥离。由于电池内部的长期压力,结构化的LFP和锂电极在持续循环过程中能够保持其原始结构。这种独特的电极结构和电池设计协同实现了优异的倍率性能,在9 mA cm的高电流密度下放电容量高达128 mA h g,并且具有令人印象深刻的循环稳定性,在1.5 mA cm下循环300次后容量保持率为89.6%。此外,进行了超声透射映射,结果表明在长时间循环的改性锂||LFP软包电池运行过程中没有气体行为。这种简单的制造方法有可能应用于许多其他活性材料,以实现具有高性能的实用LMBs。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验