Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California, San Francisco, California 94143, United States.
J Am Chem Soc. 2023 Mar 29;145(12):6741-6752. doi: 10.1021/jacs.2c12781. Epub 2023 Mar 16.
Molecules that stabilize protein-protein interactions (PPIs) are invaluable as tool compounds for biophysics and (structural) biology, and as starting points for molecular glue drug discovery. However, identifying initial starting points for PPI stabilizing matter is highly challenging, and chemical optimization is labor-intensive. Inspired by chemical crosslinking and reversible covalent fragment-based drug discovery, we developed an approach that we term "molecular locks" to rapidly access molecular glue-like tool compounds. These dual-covalent small molecules reversibly react with a nucleophilic amino acid on each of the partner proteins to dynamically crosslink the protein complex. The PPI between the hub protein 14-3-3 and estrogen-related receptor γ (ERRγ) was used as a pharmacologically relevant case study. Based on a focused library of dual-reactive small molecules, a molecular glue tool compound was rapidly developed. Biochemical assays and X-ray crystallographic studies validated the ternary covalent complex formation and overall PPI stabilization via dynamic covalent crosslinking. The molecular lock approach is highly selective for the specific 14-3-3/ERRγ complex, over other 14-3-3 complexes. This selectivity is driven by the interplay of molecular reactivity and molecular recognition of the composite PPI binding interface. The long lifetime of the dual-covalent locks enabled the selective stabilization of the 14-3-3/ERRγ complex even in the presence of several other competing 14-3-3 clients with higher intrinsic binding affinities. The molecular lock approach enables systematic, selective, and potent stabilization of protein complexes to support molecular glue drug discovery.
稳定蛋白质-蛋白质相互作用(PPIs)的分子是生物物理学和(结构)生物学的宝贵工具化合物,也是分子胶水药物发现的起点。然而,识别 PPI 稳定物质的初始起点极具挑战性,并且化学优化需要大量的劳动。受化学交联和基于可逆共价片段的药物发现的启发,我们开发了一种我们称之为“分子锁”的方法,以快速获得类似分子胶水的工具化合物。这些双共价小分子可与每个伴侣蛋白上的亲核氨基酸可逆反应,从而动态交联蛋白复合物。14-3-3 和雌激素相关受体γ(ERRγ)之间的 PPI 被用作药理学相关的案例研究。基于双反应性小分子的聚焦文库,快速开发了一种分子胶水工具化合物。生化测定和 X 射线晶体学研究验证了通过动态共价交联形成的三元共价复合物和整体 PPI 稳定。分子锁方法对特定的 14-3-3/ERRγ 复合物具有高度选择性,而对其他 14-3-3 复合物则没有选择性。这种选择性是由复合 PPI 结合界面的分子反应性和分子识别的相互作用驱动的。双共价锁的长寿命使 14-3-3/ERRγ 复合物能够选择性稳定,即使存在其他几个具有更高内在结合亲和力的竞争 14-3-3 客户。分子锁方法能够系统地、选择性地和有效地稳定蛋白复合物,以支持分子胶水药物发现。