Suppr超能文献

根据包括心脏手术后尿量在内的完整KDIGO标准,基于算法检测急性肾损伤:一项描述性分析。

Algorithm-based detection of acute kidney injury according to full KDIGO criteria including urine output following cardiac surgery: a descriptive analysis.

作者信息

Schmid Nico, Ghinescu Mihnea, Schanz Moritz, Christ Micha, Schricker Severin, Ketteler Markus, Alscher Mark Dominik, Franke Ulrich, Goebel Nora

机构信息

Department of Medical Informatics, Robert Bosch Society for Medical Research, Stuttgart, Germany.

Department of Cardiovascular Surgery, Robert Bosch Hospital, Stuttgart, Germany.

出版信息

BioData Min. 2023 Mar 16;16(1):12. doi: 10.1186/s13040-023-00323-3.

Abstract

BACKGROUND

Automated data analysis and processing has the potential to assist, improve and guide decision making in medical practice. However, by now it has not yet been fully integrated in a clinical setting. Herein we present the first results of applying algorithm-based detection to the diagnosis of postoperative acute kidney injury (AKI) comprising patient data from a cardiac surgical intensive care unit (ICU).

METHODS

First, we generated a well-defined study population of cardiac surgical ICU patients by implementing an application programming interface (API) to extract, clean and select relevant data from the archived digital patient management system. Health records of N = 21,045 adult patients admitted to the ICU following cardiac surgery between 2012 and 2022 were analyzed. Secondly, we developed a software functionality to detect the incidence of AKI according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria, including urine output. Incidence, severity, and temporal evolution of AKI were assessed.

RESULTS

With the use of our automated data analyzing model the overall incidence of postoperative AKI was 65.4% (N = 13,755). Divided by stages, AKI 2 was the most frequent maximum disease stage with 30.5% of patients (stage 1 in 17.6%, stage 3 in 17.2%). We observed considerable temporal divergence between first detections and maximum AKI stages: 51% of patients developed AKI stage 2 or 3 after a previously identified lower stage. Length of ICU stay was significantly prolonged in AKI patients (8.8 vs. 6.6 days, p <  0.001) and increased for higher AKI stages up to 10.1 days on average. In terms of AKI criteria, urine output proved to be most relevant, contributing to detection in 87.3% (N = 12,004) of cases.

CONCLUSION

The incidence of postoperative AKI following cardiac surgery is strikingly high with 65.4% when using full KDIGO-criteria including urine output. Automated data analysis demonstrated reliable early detection of AKI with progressive deterioration of renal function in the majority of patients, therefore allowing for potential earlier therapeutic intervention for preventing or lessening disease progression, reducing the length of ICU stay, and ultimately improving overall patient outcomes.

摘要

背景

自动化数据分析与处理有潜力辅助、改善并指导医疗实践中的决策制定。然而,目前它尚未完全融入临床环境。在此,我们展示了将基于算法的检测应用于术后急性肾损伤(AKI)诊断的首批结果,该研究纳入了心脏外科重症监护病房(ICU)的患者数据。

方法

首先,我们通过实现应用程序编程接口(API)从存档的数字患者管理系统中提取、清理和选择相关数据,从而生成了一个明确界定的心脏外科ICU患者研究群体。对2012年至2022年间心脏手术后入住ICU的N = 21,045名成年患者的健康记录进行了分析。其次,我们开发了一种软件功能,根据改善全球肾脏病预后组织(KDIGO)的标准(包括尿量)来检测AKI的发生率。评估了AKI的发生率、严重程度和时间演变情况。

结果

使用我们的自动化数据分析模型,术后AKI的总体发生率为65.4%(N = 13,755)。按阶段划分,AKI 2是最常见的最高疾病阶段,占患者的30.5%(1期为17.6%,3期为17.2%)。我们观察到首次检测与最高AKI阶段之间存在显著的时间差异:51%的患者在先前确定的较低阶段后发展为AKI 2期或3期。AKI患者的ICU住院时间显著延长(8.8天对6.6天,p < 0.001),且随着AKI阶段升高,平均住院时间增加至10.1天。就AKI标准而言,尿量被证明最为相关,在87.3%(N = 12,004)的病例中有助于检测。

结论

使用包括尿量在内的完整KDIGO标准时,心脏手术后术后AKI的发生率高达65.4%,令人震惊。自动化数据分析显示,在大多数患者中能够可靠地早期检测到AKI,且肾功能呈进行性恶化,因此有可能更早地进行治疗干预,以预防或减轻疾病进展,缩短ICU住院时间,并最终改善患者总体预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验