Suppr超能文献

通过分子实空间划分定义的分子中的原子电荷被分割到原子子空间中。

Atomic charges in molecules defined by molecular real space partition into atomic subspaces.

作者信息

Zhao Jian, Zhu Zun-Wei, Zhao Dong-Xia, Yang Zhong-Zhi

机构信息

School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning province, 116029, China.

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning province, 116023, China.

出版信息

Phys Chem Chem Phys. 2023 Mar 29;25(13):9020-9030. doi: 10.1039/d2cp05428k.

Abstract

Atomic charge (AC), which is the charge distribution of a molecule, is an important property that is closely associated with structures, reactivities, and intra- and inter-molecular interactions among molecules. Several theoretical models or methods can be used to obtain the magnitudes of AC with different characteristics. These models can be classified into fuzzy-atoms models and models partitioning a molecule into individual atoms with sharp boundaries. The first category includes Mulliken, natural population analysis (NPA), Hirshfeld, Merz-Kollman-Singh (MK), CHELPG, the electronegativity equalization method (EEM), the atom-bond electronegativity equalization method (ABEEM), and atomic polar tensor (APT). The second category is derived from quantum chemical topology (QCT) and includes the quantum theory of atoms in molecules (QTAIM) and QCT analysis based on the potential acting on one electron in a molecule (PAEMQCT). Herein, after giving a bird's-eye view of the population methods of the first category, we specifically describe some features of the second category. We only present the basic framework of QCT for obtaining ACs from QTAIM and PAEMQCT and show their important characteristics. QCT establishes the basis of the following chemical concept: a molecule is spatially partitioned into individual atoms with sharp boundaries. The ACs from QTAIM are close to the atomic valence in chemistry, and ACs from PAEMQCT may be practically suitable for modeling intra- and inter-molecular interactions.

摘要

原子电荷(AC)是分子的电荷分布,是一种重要性质,与分子的结构、反应性以及分子内和分子间相互作用密切相关。有几种理论模型或方法可用于获得具有不同特征的原子电荷大小。这些模型可分为模糊原子模型和将分子划分为具有清晰边界的单个原子的模型。第一类包括穆利肯(Mulliken)、自然布居分析(NPA)、赫希菲尔德(Hirshfeld)、默茨 - 科尔曼 - 辛格(MK)、CHELPG、电负性均衡方法(EEM)、原子 - 键电负性均衡方法(ABEEM)和原子极化张量(APT)。第二类源自量子化学拓扑学(QCT),包括分子中原子的量子理论(QTAIM)和基于分子中作用于一个电子的势的QCT分析(PAEMQCT)。在此,在对第一类布居方法进行概述之后,我们具体描述第二类的一些特征。我们仅展示从QTAIM和PAEMQCT获得原子电荷的QCT基本框架,并展示它们的重要特征。QCT建立了以下化学概念的基础:分子在空间上被划分为具有清晰边界的单个原子。来自QTAIM的原子电荷在化学上接近原子价,而来自PAEMQCT的原子电荷可能实际上适用于对分子内和分子间相互作用进行建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验