Suppr超能文献

用于预测弗里德里希共济失调疾病特征严重程度的新指标。

A Novel Metric for Predicting Severity of Disease Features in Friedreich's Ataxia.

机构信息

Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Clinical Data Science GmbH, Basel, Switzerland.

出版信息

Mov Disord. 2023 Jun;38(6):970-977. doi: 10.1002/mds.29370. Epub 2023 Mar 16.

Abstract

BACKGROUND

Friedreich's ataxia (FRDA), most commonly caused by a GAA triplet repeat (GAA-TR) expansion in intron 1 of the FXN gene, is characterized by deficiency of frataxin protein and clinical features such as progressive ataxia, dysarthria, impaired proprioception and vibration, abolished deep tendon reflexes, Babinski sign, and vision loss in association with non-neurological features such as skeletal anomalies, hearing loss, cardiomyopathy, and diabetes. Pathogenic GAA-TRs range in size from 60 to 1500 triplets and negatively correlate with age of onset. Clinical severity is predicted by a combination of GAA-TR length and disease duration (DD) via multivariable regressions, which cannot typically be used for the small sample sizes in most studies on this rare disease.

OBJECTIVE

We aimed to develop a single metric, which we call "disease burden" (DB), that encompasses both GAA-TR length and DD for predicting disease features of FRDA in small sample sizes.

METHODS

Linear regression and multivariable regression analysis was used to determine correlation coefficients between different disease features of FRDA.

RESULTS

Using large datasets for validation, we found that DB predicts measures of neurological dysfunction in FRDA better than GAA-TR length or DD. Analogous results were found using small datasets.

CONCLUSIONS

FRDA DB is a novel metric of disease severity that has utility in small datasets to demonstrate correlations that would not otherwise be evident with either GAA-TR or DD alone. This is important for discovering new biomarkers, as well as improving the prediction of severity of disease features in FRDA. © 2023 International Parkinson and Movement Disorder Society.

摘要

背景

弗里德赖希共济失调(FRDA)最常见的病因是 FXN 基因内含子 1 中 GAA 三核苷酸重复(GAA-TR)扩展,其特征是 frataxin 蛋白缺乏以及进行性共济失调、构音障碍、本体感觉和振动受损、深腱反射消失、巴宾斯基征和视力丧失等临床特征,并伴有骨骼异常、听力损失、心肌病和糖尿病等非神经特征。致病 GAA-TR 大小从 60 到 1500 个三核苷酸不等,与发病年龄呈负相关。通过多变量回归,临床严重程度由 GAA-TR 长度和疾病持续时间(DD)共同预测,但对于大多数罕见疾病的研究中,由于样本量小,通常无法使用多变量回归。

目的

我们旨在开发一种单一指标,称为“疾病负担”(DB),它包含 GAA-TR 长度和 DD,用于预测 FRDA 的疾病特征,即使在小样本量的情况下也是如此。

方法

使用线性回归和多变量回归分析来确定 FRDA 不同疾病特征之间的相关系数。

结果

使用大型数据集进行验证,我们发现 DB 比 GAA-TR 长度或 DD 更能预测 FRDA 神经功能障碍的指标。使用小数据集也得到了类似的结果。

结论

FRDA DB 是一种疾病严重程度的新指标,在小样本量中具有实用性,可以证明仅使用 GAA-TR 或 DD 无法证明的相关性。这对于发现新的生物标志物以及改善 FRDA 疾病特征严重程度的预测非常重要。© 2023 国际帕金森病和运动障碍协会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验