Suppr超能文献

通过多模型推断方法重新估计墨西哥太平洋幼年姥鲨的生长情况,并验证生长带的周期性。

Re-estimation of juvenile Isurus oxyrinchus growth in the Mexican Pacific through a multimodel inference approach and verification of growth band periodicity.

机构信息

Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico.

Centro Regional de Investigación Acuícola y Pesquera Bahía de Banderas, Instituto Nacional de Pesca y Acuacultura, Bahia De Banderas, Nayarit, Mexico.

出版信息

J Fish Biol. 2023 Jun;102(6):1373-1386. doi: 10.1111/jfb.15381. Epub 2023 Apr 5.

Abstract

An update of the age and growth for juveniles of the short fin mako shark (I. oxyrinchus) from the Mexican Pacific is presented, based on the analysis of growth band counts from dorsal vertebrae of 198 individuals [110 females, 74-231 cm of total length (TL) and 88 males, 72-231 cm TL) caught during 2008-2018. New available information on vertebral growth band periodicity (biannual deposition in juveniles) and the convenience of using vertebrae form the dorsal region over the cervical region to count growth bands, as well as a multimodel approach, were used. The von Bertalanffy (VB) growth model, Gompertz, logistic and two parameters of VB (2-VB) were fitted to the length-at-age. Only ages ≤6 years were used for the fitting of the models and their performance was compared with the small-sample bias-corrected form of the Akaike information criterion (AICc), their differences ( and weights ( ). Following a multimodel inference approach, the model averaged asymptotic length ( ), length-at-age 0 ( ) and their unconditional standard error ( ), were estimated for each sex scenario using the three-parameter version of each model. The precision of growth band counts was acceptable for the different methods used and by two different readers. The centrum edge analysis (CEA) and marginal increment analysis (MIA) did not support the hypothesis of biannual band pair formation for juveniles, likewise for adults the periodicity could not be verified due to the small sample of large animals. Age was estimated assuming the formation of two pairs of growth bands per year during the first 5 years and one pair of bands per year afterwards considering direct validation information. The estimated ages in years ranged from 0-14 for females and 0-6 for males. The Kimura likelihood ratio test showed no differences in the growth curves of juveniles by sex (P > 0.05). According to the AICc, the 2-VB model better fitted the length-at-age data for combined sexes (L  = 386.4 cm, k = 0.12 years , L  = 70 cm). The model averaged and were 378.3 cm ( ) and 69.5 cm ( ), respectively. The growth parameters determined for juveniles of I. oxyrinchus are similar to those estimated in other regions, showing relatively fast growth rate as previously reported, medium longevity in comparison to other shark species and natural mortality close to that reported in the last stock assessment for the North Pacific Ocean. These life-history parameters should be considered to evaluate the population in the region and to develop better fishery management and conservation measures.

摘要

本文呈现了基于 2008-2018 年期间捕获的 198 条短鳍真鲨(I. oxyrinchus)个体(110 条雌性,全长 74-231cm;74 条雄性,全长 72-231cm)的背椎生长带计数分析,更新了短鳍真鲨幼鱼的年龄和生长情况。新的可用信息包括椎骨生长带周期性(幼鱼中每两年沉积一次)以及使用背区脊椎计数生长带的便利性,以及多模型方法,都被应用于本研究。贝氏(von Bertalanffy,VB)生长模型、Gompertz 模型、逻辑斯蒂模型和 VB 的两个参数模型(2-VB)被用于拟合体长-年龄数据。仅使用年龄 ≤6 年的数据来拟合模型,并比较了小样本偏倚校正 Akaike 信息量准则(AICc)的模型性能,比较了它们的差异( )和权重( )。通过多模型推理方法,基于每个模型的三参数版本,分别为每个性别场景估计了模型平均渐近体长( )、体长为 0 时的年龄( )及其无条件标准误差( )。不同方法和两位不同读者的生长带计数精度均可接受。中心边缘分析(CEA)和边缘增量分析(MIA)均不支持幼鱼每年形成两对生长带的假设,同样,由于大型动物样本较小,也无法验证成年动物的周期性。根据直接验证信息,假设在前 5 年中每年形成两对生长带,之后每年形成一对生长带,从而估计年龄。女性的估计年龄范围为 0-14 岁,男性的估计年龄范围为 0-6 岁。Kimura 似然比检验显示,性别对幼鱼生长曲线没有影响(P>0.05)。根据 AICc,2-VB 模型更适合于两性的体长-年龄数据(L  =386.4cm,k  =0.12 年,L  =70cm)。模型平均 和 分别为 378.3cm( )和 69.5cm( )。短鳍真鲨幼鱼的生长参数与其他地区估计的参数相似,表现出相对较快的生长速度,与其他鲨鱼物种相比,寿命中等,自然死亡率与北太平洋最后一次种群评估报告中的死亡率相近。这些生命史参数应在评估该地区种群和制定更好的渔业管理和保护措施时加以考虑。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验