Suppr超能文献

多功能共振桥介导的钙钛矿薄膜动态调制,提高光伏的本征稳定性。

Multifunctional Resonance Bridge-Mediated Dynamic Modulation of Perovskite Films For Enhanced Intrinsic Stability of Photovoltaics.

机构信息

Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Geyu Road, Wuhan, 430000, China.

出版信息

Small. 2023 Jun;19(25):e2207226. doi: 10.1002/smll.202207226. Epub 2023 Mar 17.

Abstract

The improving intrinsic stability, determining the life span of devices, is a challenging task in the industrialization of inverted perovskite solar cells. The most important prerequisite for boosting intrinsic stability is high-quality perovskite films deposition. Here, a molecule, N-(2-pyridyl)pivalamide (NPP) is utilized, as a multifunctional resonance bridge between poly(triarylamine) (PTAA) and perovskite film to regulate the perovskite film quality and promote hole extraction for enhancing the device intrinsic stability. The pyridine groups in NPP couple with the phenyl groups in PTAA through π-π stacking to improve hole extraction capacities and minimize interfacial charge recombination, and the resonance linkages (NCO) in NPP dynamically modulate the perovskite buried defects through strong PbO bonds based on the fast self-adaptive tautomerization between resonance forms (NCO and N CO ). Because of the combined effect of the reduction defect density and improved energy level in the perovskite buried interfaces as well as the optimized crystal orientation in perovskite film enabled by the NPP substrate, the devices based on NPP-grown perovskite films show an efficiency approaching 20% with negligible hysteresis. More impressively, the unencapsulated device displays start-of-the-art intrinsic photostability, operating under continuous 1-sun illumination for 2373 h at 65 °C without loss of PCE.

摘要

提高内在稳定性,决定器件的使用寿命,是反型钙钛矿太阳能电池产业化的一项具有挑战性的任务。提高内在稳定性的最重要前提是高质量钙钛矿薄膜的沉积。在这里,利用一种多功能共振桥联分子 N-(2-吡啶基)戊酰胺(NPP),将其作为聚(三芳基胺)(PTAA)和钙钛矿薄膜之间的桥梁,调节钙钛矿薄膜的质量,促进空穴提取,从而提高器件的内在稳定性。NPP 中的吡啶基团通过π-π 堆积与 PTAA 中的苯基基团结合,以提高空穴提取能力并最小化界面电荷复合,而 NPP 中的共振键(NCO)则通过基于共振形式(NCO 和 N CO)之间快速自适应互变异构的强 PbO 键动态调节钙钛矿掩埋缺陷。由于 NPP 基底降低了钙钛矿掩埋界面的缺陷密度并改善了能级,同时优化了钙钛矿薄膜的晶体取向,基于 NPP 生长的钙钛矿薄膜的器件显示出接近 20%的效率,几乎没有滞后现象。更令人印象深刻的是,未封装的器件表现出了先进的内在光稳定性,在 65°C 下持续 1 个太阳光照 2373 小时后,其光电转换效率(PCE)没有损失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验