Suppr超能文献

脑脊液和血清蛋白质组学谱可准确区分马的神经轴突营养不良与颈椎压迫性脊髓病。

Cerebrospinal fluid and serum proteomic profiles accurately distinguish neuroaxonal dystrophy from cervical vertebral compressive myelopathy in horses.

机构信息

Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.

Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA.

出版信息

J Vet Intern Med. 2023 Mar;37(2):689-696. doi: 10.1111/jvim.16660. Epub 2023 Mar 16.

Abstract

BACKGROUND

Cervical vertebral compressive myelopathy (CVCM) and equine neuroaxonal dystrophy/degenerative myeloencephalopathy (eNAD/EDM) are leading causes of spinal ataxia in horses. The conditions can be difficult to differentiate, and there is currently no diagnostic modality that offers a definitive antemortem diagnosis.

OBJECTIVE

Evaluate novel proteomic techniques and machine learning algorithms to predict biomarkers that can aid in the antemortem diagnosis of noninfectious spinal ataxia in horses.

ANIMALS

Banked serum and cerebrospinal fluid (CSF) samples from necropsy-confirmed adult eNAD/EDM (n = 47) and CVCM (n = 25) horses and neurologically normal adult horses (n = 45).

METHODS

. A subset of serum and CSF samples from eNAD/EDM (n = 5) and normal (n = 5) horses was used to evaluate the proximity extension assay (PEA). All samples were assayed by PEA for 368 neurologically relevant proteins. Data were analyzed using machine learning algorithms to define potential diagnostic biomarkers.

RESULTS

Of the 368 proteins, 84 were detected in CSF and 146 in serum. Eighteen of 84 proteins in CSF and 30/146 in serum were differentially abundant among the 3 groups, after correction for multiple testing. Modeling indicated that a 2-protein test using CSF had the highest accuracy for discriminating among all 3 groups. Cerebrospinal fluid R-spondin 1 (RSPO1) and neurofilament-light (NEFL), in parallel, predicted normal horses with an accuracy of 87.18%, CVCM with 84.62%, and eNAD/EDM with 73.5%.

MAIN LIMITATIONS

Cross-species platform. Uneven sample size.

CONCLUSIONS AND CLINICAL IMPORTANCE

Proximity extension assay technology allows for rapid screening of equine biologic matrices for potential protein biomarkers. Machine learning analysis allows for unbiased selection of highly accurate biomarkers from high-dimensional data.

摘要

背景

颈椎压迫性脊髓病(CVCM)和马神经轴突营养不良/退行性脑脊髓病(eNAD/EDM)是马脊柱共济失调的主要原因。这两种疾病很难区分,目前还没有一种诊断方式可以提供明确的生前诊断。

目的

评估新的蛋白质组学技术和机器学习算法,以预测有助于马非传染性脊柱共济失调生前诊断的生物标志物。

动物

来自尸检证实的成年 eNAD/EDM(n=47)和 CVCM(n=25)马以及神经正常的成年马(n=45)的存档血清和脑脊液(CSF)样本。

方法

使用 eNAD/EDM(n=5)和正常(n=5)马的血清和 CSF 样本子集评估邻近延伸分析(PEA)。通过 PEA 分析所有样本中的 368 种神经相关蛋白。使用机器学习算法分析数据,以定义潜在的诊断生物标志物。

结果

在 368 种蛋白质中,84 种在 CSF 中检测到,146 种在血清中检测到。在 3 组之间,经多次测试校正后,CSF 中有 18 种蛋白和血清中有 30/146 种蛋白的丰度存在差异。模型表明,使用 CSF 的 2 种蛋白质测试对所有 3 组的区分准确性最高。CSF 中的 R 脊椎蛋白 1(RSPO1)和神经丝轻链(NEFL)平行预测正常马的准确性为 87.18%,CVCM 为 84.62%,eNAD/EDM 为 73.5%。

主要局限性

跨物种平台。样本量不均匀。

结论和临床意义

邻近延伸分析技术允许快速筛选马生物基质中的潜在蛋白质生物标志物。机器学习分析允许从高维数据中选择高度准确的生物标志物,而无需进行有偏见的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa0f/10061172/a8b9b558558a/JVIM-37-689-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验