Mansuri Ali, Münzner Philipp, Heermant Anrika, Patzina Fabian, Feuerbach Tim, Winck Judith, Vermeer Arnoldus W P, Hoheisel Werner, Böhmer Roland, Gainaru Catalin, Thommes Markus
Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany.
INVITE GmbH, 51061 Cologne, Germany.
Mol Pharm. 2023 Apr 3;20(4):2067-2079. doi: 10.1021/acs.molpharmaceut.2c01042. Epub 2023 Mar 17.
The main goal of this study is to develop an experimental toolbox to estimate the self-diffusion coefficient of active ingredients (AI) in single-phase amorphous solid dispersions (ASD) close to the glass transition of the mixture using dielectric spectroscopy (DS) and oscillatory rheology. The proposed methodology is tested for a model system containing the insecticide imidacloprid (IMI) and the copolymer copovidone (PVP/VA) prepared via hot-melt extrusion. For this purpose, reorientational and the viscoelastic structural (α-)relaxation time constants of hot-melt-extruded ASDs were obtained via DS and shear rheology, respectively. These were then utilized to extract the viscosity as well as the fragility index of the dispersions as input parameters to the fractional Stokes-Einstein (F-SE) relation. Furthermore, a modified version of Almond-West (AW) formalism, originally developed to describe charge diffusion in ionic conductors, was exercised on the present model system for the estimation of the AI diffusion coefficients based on shear modulus relaxation times. Our results revealed that, at the calorimetric glass-transition temperature (), the self-diffusion coefficients of the AI in the compositional range from infinite dilution up to 60 wt % IMI content lied in the narrow range of 10-10 m s, while the viscosity values of the dispersions at varied between 10 Pa s and 10 Pa s. In addition, the phase diagram of the IMI-PVP/VA system was determined using the melting point depression method via differential scanning calorimetry (DSC), while mid-infrared (IR) spectroscopy was employed to investigate the intermolecular interactions within the solid dispersions. In this respect, the findings of a modest variation in melting point at different compositions stayed in agreement with the observations of weak hydrogen bonding interactions between the AI and the polymer. Moreover, IR spectroscopy showed the intermolecular IMI-IMI hydrogen bonding to have been considerably suppressed, as a result of the spatial separation of the AI molecules within the ASDs. In summary, this study provides experimental approaches to study diffusivity in ASDs using DS and oscillatory rheology, in addition to contributing to an enhanced understanding of the interactions and phase behavior in these systems.
本研究的主要目标是开发一个实验工具箱,以使用介电谱(DS)和振荡流变学来估计单相非晶态固体分散体(ASD)中活性成分(AI)在接近混合物玻璃化转变温度时的自扩散系数。所提出的方法针对通过热熔挤出制备的含有杀虫剂吡虫啉(IMI)和共聚物共聚维酮(PVP/VA)的模型体系进行了测试。为此,分别通过DS和剪切流变学获得了热熔挤出ASD的取向弛豫和粘弹性结构(α-)弛豫时间常数。然后将这些用于提取分散体的粘度以及脆性指数,作为分数斯托克斯-爱因斯坦(F-SE)关系的输入参数。此外,最初用于描述离子导体中电荷扩散的Almond-West(AW)形式主义的改进版本,被应用于当前模型体系,以基于剪切模量弛豫时间来估计AI扩散系数。我们的结果表明,在量热玻璃化转变温度()下,AI在从无限稀释到60 wt%IMI含量的组成范围内的自扩散系数处于10 - 10 m s的狭窄范围内,而分散体在该温度下的粘度值在10 Pa s和10 Pa s之间变化。此外,使用差示扫描量热法(DSC)通过熔点降低法确定了IMI-PVP/VA体系的相图,同时采用中红外(IR)光谱研究了固体分散体内的分子间相互作用。在这方面,不同组成下熔点的适度变化的发现与AI和聚合物之间弱氢键相互作用的观察结果一致。此外,IR光谱表明,由于ASD中AI分子的空间分离,分子间IMI-IMI氢键已被显著抑制。总之,本研究除了有助于增强对这些体系中相互作用和相行为的理解外,还提供了使用DS和振荡流变学研究ASD中扩散率的实验方法。