Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA.
Phys Rev Lett. 2023 Mar 3;130(9):096902. doi: 10.1103/PhysRevLett.130.096902.
We show that the spatial coherence of thermal radiation can be manipulated in time-modulated photonic systems supporting surface polaritons. We develop a fluctuational electrodynamics formalism for such systems to calculate the cross-spectral density tensor of the emitted thermal electromagnetic fields in the near-field regime. Our calculations indicate that, due to time-modulation, spatial coherence can be transferred between different frequencies, and correlations between different frequency components become possible. All these effects are unique to time-modulated systems. We also show that the decay rate of optical emitters can be controlled in the proximity of such time-modulated structure. Our findings open a promising avenue toward coherence control in thermal radiation, dynamical thermal imaging, manipulating energy transfer among thermal or optical emitters, efficient near-field radiative cooling, and engineering spontaneous emission rates of molecules.
我们表明,在支持表面等离激元的时变光子系统中,可以对热辐射的空间相干性进行操纵。我们为这类系统开发了一种涨落电动力学形式体系,以计算近场条件下发射的热电磁场所的交叉谱密度张量。我们的计算表明,由于时变调制,不同频率之间的空间相干性可以相互转移,不同频率分量之间的相关性也成为可能。所有这些效应都是时变系统所特有的。我们还表明,在这种时变结构的近场中,可以控制光发射器的衰减速率。我们的发现为热辐射的相干性控制、动态热成像、控制热或光发射器之间的能量转移、高效近场辐射冷却以及工程化分子的自发辐射率开辟了一条很有前景的途径。