Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain.
Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain.
J Neurosci. 2023 Apr 26;43(17):3028-3041. doi: 10.1523/JNEUROSCI.1341-22.2023. Epub 2023 Mar 17.
Transcription factors have a pivotal role in synaptic plasticity and the associated modification of neuronal networks required for memory formation and consolidation. The nuclear receptors subfamily 4 group A (Nr4a) have emerged as possible modulators of hippocampal synaptic plasticity and cognitive functions. However, the molecular and cellular mechanisms underlying Nr4a2-mediated hippocampal synaptic plasticity are not completely known. Here, we report that neuronal activity enhances Nr4a2 expression and function in cultured mouse hippocampal neurons (both sexes) by an ionotropic glutamate receptor/Ca/cAMP response element-binding protein/CREB-regulated transcription factor 1 (iGluR/Ca/CREB/CRTC1) pathway. Nr4a2 activation mediates BDNF production and increases expression of iGluRs, thereby affecting LTD at CA3-CA1 synapses in acute mouse hippocampal slices (both sexes). Together, our results indicate that the iGluR/CaCREB/CRTC1 pathway mediates activity-dependent expression of Nr4a2, which is involved in glutamatergic synaptic plasticity by increasing BDNF and synaptic GluA1-AMPARs. Therefore, Nr4a2 activation could be a therapeutic approach for brain disorders associated with dysregulated synaptic plasticity. A major factor that regulates fast excitatory synaptic transmission and plasticity is the modulation of synaptic AMPARs. However, despite decades of research, the underlying mechanisms of this modulation remain poorly understood. Our study identified a molecular pathway that links neuronal activity with AMPAR modulation and hippocampal synaptic plasticity through the activation of Nr4a2, a member of the nuclear receptor subfamily 4. Since several compounds have been described to activate Nr4a2, our study not only provides mechanistic insights into the molecular pathways related to hippocampal synaptic plasticity and learning, but also identifies Nr4a2 as a potential therapeutic target for pathologic conditions associated with dysregulation of glutamatergic synaptic function.
转录因子在突触可塑性和神经元网络的相关修饰中起着关键作用,这些修饰是记忆形成和巩固所必需的。核受体亚家族 4 组 A (Nr4a) 已成为调节海马突触可塑性和认知功能的可能调节剂。然而,Nr4a2 介导的海马突触可塑性的分子和细胞机制尚不完全清楚。在这里,我们报告说,神经元活性通过离子型谷氨酸受体/Ca/cAMP 反应元件结合蛋白/CREB 调节转录因子 1(iGluR/Ca/CREB/CRTC1)途径增强培养的小鼠海马神经元(雌雄同体)中 Nr4a2 的表达和功能。Nr4a2 的激活介导 BDNF 的产生并增加 iGluR 的表达,从而影响急性小鼠海马切片中 CA3-CA1 突触的 LTD(雌雄同体)。总之,我们的结果表明,iGluR/CaCREB/CRTC1 途径介导 Nr4a2 的活性依赖性表达,通过增加 BDNF 和突触 GluA1-AMPAR 来参与谷氨酸能突触可塑性。因此,Nr4a2 的激活可能是治疗与突触可塑性失调相关的脑部疾病的一种方法。调节快速兴奋性突触传递和可塑性的一个主要因素是突触 AMPAR 的调节。然而,尽管经过几十年的研究,这种调节的潜在机制仍知之甚少。我们的研究确定了一条分子途径,通过 Nr4a2 的激活,将神经元活性与 AMPAR 调节和海马突触可塑性联系起来,Nr4a2 是核受体亚家族 4 的成员。由于已经描述了几种化合物来激活 Nr4a2,因此我们的研究不仅提供了与海马突触可塑性和学习相关的分子途径的机制见解,而且还将 Nr4a2 确定为与谷氨酸能突触功能失调相关的病理状况的潜在治疗靶点。