Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
Commun Biol. 2023 Mar 17;6(1):284. doi: 10.1038/s42003-023-04657-w.
The control of cell movement through manipulation of cytoskeletal structure has therapeutic prospects notably in the development of novel anti-metastatic drugs. In this study, we determine the structure of Ras-binding domain (RBD) of ELMO1, a protein involved in cytoskeletal regulation, both alone and in complex with the activator RhoG and verify its targetability through computational nanobody design. Using our dock-and-design approach optimized with native-like initial pose selection, we obtain Nb01, a detectable binder from scratch in the first-round design. An affinity maturation step guided by structure-activity relationship at the interface generates 23 Nb01 sequence variants and 17 of them show enhanced binding to ELMO1-RBD and are modeled to form major spatial overlaps with RhoG. The best binder, Nb29, inhibited ELMO1-RBD/RhoG interaction. Molecular dynamics simulation of the flexibility of CDR2 and CDR3 of Nb29 reveal the design of stabilizing mutations at the CDR-framework junctions potentially confers the affinity enhancement.
通过操纵细胞骨架结构来控制细胞运动,在开发新型抗转移药物方面具有治疗前景。在这项研究中,我们确定了参与细胞骨架调节的蛋白 ELMO1 的 Ras 结合域(RBD)的结构,无论是单独存在还是与激活剂 RhoG 形成复合物,我们都通过计算纳米体设计来验证其靶向性。使用我们的对接和设计方法,通过类似天然的初始构象选择进行优化,我们从零开始获得了 Nb01,这是一种可检测的结合物。在基于结构活性关系的亲和力成熟步骤中,在界面处生成 23 个 Nb01 序列变体,其中 17 个显示出与 ELMO1-RBD 更强的结合,并被建模为与 RhoG 形成主要的空间重叠。最佳结合物 Nb29 抑制了 ELMO1-RBD/RhoG 相互作用。Nb29 的 CDR2 和 CDR3 灵活性的分子动力学模拟表明,在 CDR-框架接头处设计稳定突变可能赋予了亲和力增强。