Suppr超能文献

机器学习模型在库欣病和异位 ACTH 分泌综合征鉴别诊断中的应用。

Machine learning models for differential diagnosis of Cushing's disease and ectopic ACTH secretion syndrome.

机构信息

Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, 100730, Beijing, China.

Eight-Year Program of Clinical Medicine, Chinese Academy of Medical Sciences, and Peking Union Medical College, 100730, Beijing, China.

出版信息

Endocrine. 2023 Jun;80(3):639-646. doi: 10.1007/s12020-023-03341-7. Epub 2023 Mar 18.

Abstract

BACKGROUND

Using machine learning (ML) to explore the noninvasive differential diagnosis of Cushing's disease (CD) and ectopic corticotropin (ACTH) secretion (EAS) model is the next hot research topic. This study was to develop and evaluate ML models for differentially diagnosing CD and EAS in ACTH-dependent Cushing's syndrome (CS).

METHODS

Two hundred sixty-four CD and forty-seven EAS were randomly divided into training and validation and test datasets. We applied 8 ML algorithms to select the most suitable model. The diagnostic performance of the optimal model and bilateral petrosal sinus sampling (BIPSS) were compared in the same cohort.

RESULTS

Eleven adopted variables included age, gender, BMI, duration of disease, morning cortisol, serum ACTH, 24-h UFC, serum potassium, HDDST, LDDST, and MRI. After model selection, the Random Forest (RF) model had the most extraordinary diagnostic performance, with a ROC AUC of 0.976 ± 0.03, a sensitivity of 98.9% ± 4.4%, and a specificity of 87.9% ± 3.0%. The serum potassium, MRI, and serum ACTH were the top three most important features in the RF model. In the validation dataset, the RF model had an AUC of 0.932, a sensitivity of 95.0%, and a specificity of 71.4%. In the complete dataset, the ROC AUC of the RF model was 0.984 (95% CI 0.950-0.993), which was significantly higher than HDDST and LDDST (both p < 0.001). There was no significant statistical difference in the comparison of ROC AUC between the RF model and BIPSS (baseline ROC AUC 0.988 95% CI 0.983-1.000, after stimulation ROC AUC 0.992 95% CI 0.983-1.000). This diagnostic model was shared as an open-access website.

CONCLUSIONS

A machine learning-based model could be a practical noninvasive approach to distinguishing CD and EAS. The diagnostic performance might be close to BIPSS.

摘要

背景

使用机器学习(ML)探索库欣病(CD)和异位促肾上腺皮质激素(ACTH)分泌(EAS)模型的无创鉴别诊断是下一个热门研究课题。本研究旨在建立和评估用于鉴别 ACTH 依赖性库欣综合征(CS)中 CD 和 EAS 的 ML 模型。

方法

264 例 CD 和 47 例 EAS 被随机分为训练和验证数据集和测试数据集。我们应用 8 种 ML 算法来选择最合适的模型。在同一队列中比较最优模型和双侧岩下窦取样(BIPSS)的诊断性能。

结果

11 个采用的变量包括年龄、性别、BMI、疾病持续时间、清晨皮质醇、血清 ACTH、24 小时 UFC、血清钾、HDDST、LDDST 和 MRI。经过模型选择,随机森林(RF)模型具有最卓越的诊断性能,ROC AUC 为 0.976±0.03,灵敏度为 98.9%±4.4%,特异性为 87.9%±3.0%。血清钾、MRI 和血清 ACTH 是 RF 模型中最重要的前三个特征。在验证数据集中,RF 模型的 AUC 为 0.932,灵敏度为 95.0%,特异性为 71.4%。在完整数据集中,RF 模型的 ROC AUC 为 0.984(95%CI 0.950-0.993),显著高于 HDDST 和 LDDST(均 p<0.001)。RF 模型与 BIPSS 的 ROC AUC 比较无显著统计学差异(基线 ROC AUC 0.988 95%CI 0.983-1.000,刺激后 ROC AUC 0.992 95%CI 0.983-1.000)。该诊断模型作为开放访问网站共享。

结论

基于机器学习的模型可能是一种实用的无创方法,可用于区分 CD 和 EAS。诊断性能可能与 BIPSS 相近。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验