School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai 200093, PR China.
School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai 200093, PR China.
Talanta. 2023 Jun 1;258:124459. doi: 10.1016/j.talanta.2023.124459. Epub 2023 Mar 15.
In this work, a terbium MOF-based molecularly imprinted polymer (Tb-MOF@SiO@MIP) was prepared using two ligands as organic linkers and triethanolamine (TEA) as a catalyst to improve the sensing performance and stability of the fluorescence sensors. The obtained Tb-MOF@SiO@MIP was then characterized using a transmission electron microscope (TEM), energy dispersive spectroscopy (EDS) Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The results revealed that Tb-MOF@SiO@MIP was successfully synthesized with a thin imprinted layer of 76 nm. The synthesized Tb-MOF@SiO@MIP maintained 96% of its original fluorescence intensity after 44 days in aqueous environments because of appropriate coordination models between the imidazole ligands as a nitrogen donor and Tb (Ⅲ). Furthermore, TGA analysis results indicated that an increase in the thermal stability of Tb-MOF@SiO@MIP was attributed to the thermal barrier from a MIP layer. The Tb-MOF@SiO@MIP sensor responded well to the addition of imidacloprid (IDP) in the range of 2.07-150 ng mL with a low detection limit of 0.67 ng mL. In vegetable samples, the sensor can quickly detect IDP levels with the average recovery ranging from 85.10 to 99.85% and RSD values ranging from 0.59 to 5.82%. The UV-vis absorption spectrum and density functional theory analysis results revealed that the inner filter effect and dynamic quenching process both contributed to the sensing process of Tb-MOF@SiO@MIP.
在这项工作中,使用两种配体作为有机连接体和三乙醇胺 (TEA) 作为催化剂,制备了基于铽金属有机骨架的分子印迹聚合物 (Tb-MOF@SiO@MIP),以提高荧光传感器的传感性能和稳定性。然后使用透射电子显微镜 (TEM)、能量色散光谱 (EDS)、傅里叶变换红外光谱 (FTIR)、粉末 X 射线衍射 (PXRD) 和热重分析 (TGA) 对获得的 Tb-MOF@SiO@MIP 进行了表征。结果表明,成功合成了具有 76nm 薄印迹层的 Tb-MOF@SiO@MIP。由于咪唑配体作为氮供体和 Tb(Ⅲ)之间的适当配位模型,合成的 Tb-MOF@SiO@MIP 在水相环境中 44 天后仍保持其原始荧光强度的 96%。此外,TGA 分析结果表明,MIP 层的热屏障导致 Tb-MOF@SiO@MIP 的热稳定性提高。Tb-MOF@SiO@MIP 传感器对添加的氯吡虫啉 (IDP) 在 2.07-150ng mL 范围内响应良好,检测限低至 0.67ng mL。在蔬菜样品中,传感器可以快速检测 IDP 水平,平均回收率在 85.10%至 99.85%之间,RSD 值在 0.59%至 5.82%之间。紫外-可见吸收光谱和密度泛函理论分析结果表明,内滤效应和动态猝灭过程都有助于 Tb-MOF@SiO@MIP 的传感过程。