Suppr超能文献

采用正渗透-膜蒸馏混合工艺从水溶液中去除铅的优化与预测:统计分析与人工智能分析

Optimization and prediction of lead removal from aqueous solution using FO-MD hybrid process: Statistical and artificial intelligence analysis.

作者信息

Boubakri Ali, Elgharbi Sarra, Dhaouadi Imen, Mansour Dorsaf, Al-Tahar Bouguecha Salah

机构信息

Laboratory Water, Membranes and Environmental Biotechnology, Center of Water Research and Technologies (CERTE), PB 273, 8020, Soliman, Tunisia.

Chemistry Department, College of Sciences, University of Ha'il, Hail, Saudi Arabia.

出版信息

J Environ Manage. 2023 Jul 1;337:117731. doi: 10.1016/j.jenvman.2023.117731. Epub 2023 Mar 16.

Abstract

Heavy metals (HMs) has become one of the most serious pollutants that are harmful to the environment and ecology. This paper focused on the removal of lead contaminant from wastewater by forward osmosis-membrane distillation (FO-MD) hybrid process using seawater as draw solution. Modeling, optimization, and prediction of FO performance are developed using complementary approach based on response surface methodology (RSM) and an artificial neural network (ANN). FO process optimization using RSM revealed that under initial lead concentration of 60 mg/L, feed velocity of 11.57 cm/s and draw velocity of 7.66 cm/s, FO process achieved highest water flux of 6.75 LMH, lowest reverse salt flux of 2.78 gMH and highest lead removal efficiency of 87.07%. Fitness of all models was evaluated based on determination coefficient (R) and mean square error (MSE). Results showed highest R value up to 0.9906 and lowest RMSE value up to 0.0102. ANN modeling generates the highest prediction accuracy for water flux and reverse salt flux, while RSM produces the highest prediction accuracy for lead removal efficiency. Subsequently, FO optimal conditions are applied on FO-MD hybrid process using seawater as draw solution and evaluate their performance to simultaneously remove lead contaminant and desalination of seawater. Results displays that FO-MD process shows a highly efficient solution to produce fresh water with almost free heavy metals and very low conductivity.

摘要

重金属已成为对环境和生态有害的最严重污染物之一。本文重点研究了以海水为汲取液,采用正向渗透-膜蒸馏(FO-MD)混合工艺去除废水中铅污染物的方法。基于响应面法(RSM)和人工神经网络(ANN)的互补方法,对FO性能进行了建模、优化和预测。使用RSM对FO工艺进行优化后发现,在初始铅浓度为60 mg/L、进料速度为11.57 cm/s和汲取速度为7.66 cm/s的条件下,FO工艺实现了最高水通量6.75 LMH、最低反向盐通量2.78 gMH和最高铅去除效率87.07%。基于决定系数(R)和均方误差(MSE)对所有模型的拟合度进行了评估。结果显示最高R值达到0.9906,最低RMSE值达到0.0102。ANN建模对水通量和反向盐通量的预测准确率最高,而RSM对铅去除效率的预测准确率最高。随后,将FO最佳条件应用于以海水为汲取液的FO-MD混合工艺,并评估其同时去除铅污染物和海水脱盐的性能。结果表明,FO-MD工艺是一种高效的解决方案,能够生产出几乎不含重金属且电导率极低的淡水。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验