Xi Yarui, Zhou Pengwu, Yu Haijun, Zhang Tao, Zhang Lingli, Qiao Zhiwei, Liu Fenglin
Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China.
The Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing, China.
Med Phys. 2023 Sep;50(9):5568-5584. doi: 10.1002/mp.16371. Epub 2023 Apr 6.
With the development of low-dose computed tomography (CT), incomplete data reconstruction has been widely concerned. The total variation (TV) minimization algorithm can accurately reconstruct images from sparse or noisy data.
However, the traditional TV algorithm ignores the direction of structures in images, leading to the loss of edge information and block artifacts when the object is not piecewise constant. Since the anisotropic information can facilitate preserving the edge and detail information in images, we aim to improve the TV algorithm in terms of reconstruction accuracy via this approach.
In this paper, we propose an adaptive-weighted high order total variation (awHOTV) algorithm. We construct the second order TV-norm using the second order gradient, adapt the anisotropic edge property between neighboring image pixels, adjust the local image-intensity gradient to keep edge information, and design the corresponding Chambolle-Pock (CP) solving algorithm. Implementing the proposed algorithm, comprehensive studies are conducted in the ideal projection data experiment where the Structural similarity (SSIM), Root Mean Square Error (RMSE), Contrast to noise ratio (CNR), and modulation transform function (MTF) curves are utilized to evaluate the quality of reconstructed images in statism, structure, spatial resolution, and contrast, respectively. In the noisy data experiment, we further use the noise power spectrum (NPS) curve to evaluate the reconstructed images and compare it with other three algorithms.
We use the 2D slice in the XCAT phantom, 2D slice in TCIA Challenge data and FORBILD phantom as simulation phantoms and use real bird data for real verification. The results show that, compared with the traditional TV and FBP algorithms, the awHOTV has better performance in terms of RMSE, SSIM, and Pearson correlation coefficient (PCC) under the projected data with different sparsity. In addition, the awHOTV algorithm is robust against the noise of different intensities.
The proposed awHOTV method can reconstruct the images with high accuracy under sparse or noisy data. The awHOTV solves the strip artifacts caused by sparse data in the FBP method. Compared with the TV method, the awHOTV can effectively suppress block artifacts and has good detail protection ability.
随着低剂量计算机断层扫描(CT)的发展,不完全数据重建受到广泛关注。全变差(TV)最小化算法能够从稀疏或有噪声的数据中准确重建图像。
然而,传统的TV算法忽略了图像中结构的方向,当物体不是分段常数时会导致边缘信息丢失和块状伪影。由于各向异性信息有助于保留图像中的边缘和细节信息,我们旨在通过这种方法提高TV算法在重建精度方面的性能。
在本文中,我们提出了一种自适应加权高阶全变差(awHOTV)算法。我们使用二阶梯度构建二阶TV范数,适应相邻图像像素之间的各向异性边缘特性,调整局部图像强度梯度以保留边缘信息,并设计相应的Chambolle-Pock(CP)求解算法。实施所提出的算法,在理想投影数据实验中进行综合研究,其中分别利用结构相似性(SSIM)、均方根误差(RMSE)、对比度噪声比(CNR)和调制传递函数(MTF)曲线来评估重建图像在统计、结构、空间分辨率和对比度方面的质量。在有噪声数据实验中,我们进一步使用噪声功率谱(NPS)曲线来评估重建图像,并将其与其他三种算法进行比较。
我们使用XCAT体模中的二维切片、TCIA挑战数据中的二维切片和FORBILD体模作为模拟体模,并使用真实鸟类数据进行实际验证。结果表明,与传统的TV和FBP算法相比,如果投影数据具有不同的稀疏性,awHOTV在RMSE、SSIM和皮尔逊相关系数(PCC)方面具有更好的性能。此外,awHOTV算法对不同强度的噪声具有鲁棒性。
所提出的awHOTV方法能够在稀疏或有噪声的数据下高精度地重建图像。awHOTV解决了FBP方法中由稀疏数据引起的条状伪影。与TV方法相比,awHOTV能够有效抑制块状伪影并具有良好的细节保护能力。