Suppr超能文献

两种用于患者来源的癌细胞在 3D 药物敏感性和耐药性检测试验(3D-DSRT)中的支撑基质的比较。

Comparison of two supporting matrices for patient-derived cancer cells in 3D drug sensitivity and resistance testing assay (3D-DSRT).

机构信息

Institute for Molecular Medicine Finland-FIMM, Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Finland; Laboratory of Immunovirotherapy, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.

Institute for Molecular Medicine Finland-FIMM, Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Finland; UPM-Kymmene Oyj, Helsinki, Finland.

出版信息

SLAS Discov. 2023 Jun;28(4):138-148. doi: 10.1016/j.slasd.2023.03.002. Epub 2023 Mar 20.

Abstract

Central to the success of functional precision medicine of solid tumors is to perform drug testing of patient-derived cancer cells (PDCs) in tumor-mimicking ex vivo conditions. While high throughput (HT) drug screening methods have been well-established for cells cultured in two-dimensional (2D) format, this approach may have limited value in predicting clinical responses. Here, we describe the results of the optimization of drug sensitivity and resistance testing (DSRT) in three-dimensional (3D) growth supporting matrices in a HT mode (3D-DSRT) using the hepatocyte cell line (HepG2) as an example. Supporting matrices included widely used animal-derived Matrigel and cellulose-based hydrogel, GrowDex, which has earlier been shown to support 3D growth of cell lines and stem cells. Further, the sensitivity of ovarian cancer PDCs, from two patients included in the functional precision medicine study, was tested for 52 drugs in 5 different concentrations using 3D-DSRT. Shortly, in the optimized protocol, the PDCs are embedded with matrices and seeded to 384-well plates to allow the formation of the spheroids prior to the addition of drugs in nanoliter volumes with acoustic dispenser. The sensitivity of spheroids to drug treatments is measured with cell viability readout (here, 72 h after addition of drugs). The quality control and data analysis are performed with openly available Breeze software. We show the usability of both matrices in established 3D-DSRT, and report 2D vs 3D growth condition dependent differences in sensitivities of ovarian cancer PDCs to MEK-inhibitors and cytotoxic drugs. This study provides a proof-of-concept for robust and fast screening of drug sensitivities of PDCs in 3D-DSRT, which is important not only for drug discovery but also for personalized ex vivo drug testing in functional precision medicine studies. These findings suggest that comparing results of 2D- and 3D-DSRT is essential for understanding drug mechanisms and for selecting the most effective treatment for the patient.

摘要

实体瘤功能精准医学的成功关键在于在模拟肿瘤的体外条件下对患者来源的癌细胞(PDC)进行药物测试。虽然二维(2D)培养细胞的高通量(HT)药物筛选方法已经成熟,但这种方法在预测临床反应方面可能价值有限。在这里,我们以肝细胞系(HepG2)为例,描述了在 HT 模式下(3D-DSRT)在三维(3D)生长支持基质中优化药物敏感性和耐药性测试(DSRT)的结果。支持基质包括广泛使用的动物衍生的 Matrigel 和纤维素基水凝胶 GrowDex,该水凝胶之前已被证明可支持细胞系和干细胞的 3D 生长。此外,还对纳入功能精准医学研究的两名卵巢癌患者的 PDC 进行了 52 种不同浓度药物的 3D-DSRT 敏感性测试。简而言之,在优化的方案中,将 PDC 嵌入基质中并播种到 384 孔板中,然后在添加药物之前,使用声控分配器以纳升级别添加药物,以允许形成球体。用细胞活力读数(这里是添加药物后 72 小时)测量球体对药物处理的敏感性。使用公开可用的 Breeze 软件进行质量控制和数据分析。我们展示了两种基质在既定 3D-DSRT 中的可用性,并报告了卵巢癌 PDC 对 MEK 抑制剂和细胞毒性药物敏感性的 2D 与 3D 生长条件依赖性差异。这项研究为 3D-DSRT 中 PDC 药物敏感性的快速筛选提供了概念验证,这不仅对药物发现很重要,而且对功能精准医学研究中的体外药物测试也很重要。这些发现表明,比较 2D-DSRT 和 3D-DSRT 的结果对于理解药物机制和为患者选择最有效的治疗方法至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验