Grandbois Russell M, Santschi Peter H, Xu Chen, Mitchell Joshua M, Kaplan Daniel I, Yeager Chris M
Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University-Galveston, Galveston, TX, United States.
Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, United States.
Front Chem. 2023 Mar 2;11:1105641. doi: 10.3389/fchem.2023.1105641. eCollection 2023.
I is a nuclear fission decay product of concern because of its long half-life (16 Ma) and propensity to bioaccumulate. Microorganisms impact iodine mobility in soil systems by promoting iodination (covalent binding) of soil organic matter through processes that are not fully understood. Here, we examined iodide uptake by soils collected at two depths (0-10 and 10-20 cm) from 5 deciduous and coniferous forests in Japan and the United States. Autoclaved soils, and soils amended with an enzyme inhibitor (sodium azide) or an antibacterial agent (bronopol), bound significantly less I tracer (93%, 81%, 61% decrease, respectively) than the untreated control soils, confirming a microbial role in soil iodide uptake. Correlation analyses identified the strongest significant correlation between I uptake and three explanatory variables, actinobacteria soil biomass ( = 6.04E-04, 1.35E-02 for Kendall-Tau and regression analysis, respectively), soil nitrogen content ( 4.86E-04, 4.24E-03), and soil oxidase enzyme activity at pH 7.0 using the substrate L-DOPA ( = 2.83E-03, 4.33E-04) and at pH 5.5 using the ABTS ( = 5.09E-03, 3.14E-03). Together, the results suggest that extracellular oxidases, primarily of bacterial origin, are the primary catalyst for soil iodination in aerobic, surface soils of deciduous and coniferous forests, and that soil N content may be indicative of the availability of binding sites for reactive iodine species.
碘是一种令人关注的核裂变衰变产物,因其半衰期长(1600万年)且具有生物累积倾向。微生物通过尚未完全了解的过程促进土壤有机质的碘化(共价结合),从而影响土壤系统中碘的迁移性。在此,我们研究了从日本和美国的5片落叶林和针叶林中采集的两个深度(0 - 10厘米和10 - 20厘米)土壤对碘化物的吸收情况。经高压灭菌的土壤,以及添加了酶抑制剂(叠氮化钠)或抗菌剂(溴硝醇)的土壤,与未处理的对照土壤相比,结合的碘示踪剂显著减少(分别减少93%、81%、61%),证实了微生物在土壤碘化物吸收中的作用。相关性分析确定了碘吸收与三个解释变量之间最强的显著相关性,即放线菌土壤生物量(肯德尔 - 陶氏检验为6.04E - 04,回归分析为1.35E - 02)、土壤氮含量(4.86E - 04,4.24E - 03),以及在pH 7.0时使用底物L - DOPA的土壤氧化酶活性(2.83E - 03,4.33E - 04)和在pH 5.5时使用ABTS的土壤氧化酶活性(5.09E - 03,3.14E - 03)。总体而言,结果表明,主要源自细菌的细胞外氧化酶是落叶林和针叶林好氧表层土壤中土壤碘化的主要催化剂,并且土壤氮含量可能指示活性碘物种结合位点的可用性。