Feng Min, Wang Wanli, Hu Zhaowei, Fan Cheng, Zhao Xiaoran, Wang Peng, Li Huifang, Yang Lei, Wang Xiaojun, Liu Zhiming
College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China.
Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China.
Sci China Mater. 2023;66(3):944-954. doi: 10.1007/s40843-022-2268-9. Epub 2022 Dec 7.
Lithium-ion capacitors (LICs) are promising energy storage devices because they feature the high energy density of lithium-ion batteries and the high power density of supercapacitors. However, the mismatch of electrochemical reaction kinetics between the anode and cathode in LICs makes exploring anode materials with fast ion diffusion and electron transfer channels an urgent task. Herein, the two-dimensional (2D) TiC MXene with controllable terminal groups was introduced into 1D carbon nanofibers to form a 3D conductive network by the electrospinning strategy. In such TiC MXene and carbon matrix composites (named KTi-400@CNFs), the 2D nanosheet structure endows TiC MXene with more active sites for Li ion storage, and the carbon framework is favorable to the conductivity of the composites. Impressively, Ti-O-C bonds are formed at the interface between TiC MXene and the carbon framework. Such chemical bonding in the composites builds a bridge for rapid electron transportation and quick ion diffusion in the longitudinal direction from layer to layer. As a result, the optimized KTi-400@CNFs composites maintain a good capacity of 235 mA h g for 500 cycles at a current density of 5 A g. The LIC consisting of the KTi-400@CNFs//AC configuration achieves high energy density (114.3 W h kg) and high power density (12.8 kW kg). This paper provides guidance for designing 2D materials and the KTi-400@CNFs composites with such a unique structure and superior electrochemical performance have great potential in the next-generation energy storage fields.
Supplementary material is available for this article at 10.1007/s40843-022-2268-9 and is accessible for authorized users.
锂离子电容器(LICs)是很有前景的储能装置,因为它们兼具锂离子电池的高能量密度和超级电容器的高功率密度。然而,LICs中阳极和阴极之间的电化学反应动力学不匹配,使得探索具有快速离子扩散和电子转移通道的阳极材料成为一项紧迫任务。在此,通过静电纺丝策略将具有可控端基的二维(2D)TiC MXene引入一维碳纳米纤维中,以形成三维导电网络。在这种TiC MXene与碳基体复合材料(命名为KTi-400@CNFs)中,二维纳米片结构赋予TiC MXene更多用于锂离子存储的活性位点,并且碳骨架有利于复合材料的导电性。令人印象深刻的是,在TiC MXene与碳骨架的界面处形成了Ti-O-C键。复合材料中的这种化学键为层间纵向的快速电子传输和快速离子扩散搭建了桥梁。结果,优化后的KTi-400@CNFs复合材料在5 A g的电流密度下500次循环仍保持235 mA h g的良好容量。由KTi-400@CNFs//AC配置组成的LIC实现了高能量密度(114.3 W h kg)和高功率密度(12.8 kW kg)。本文为二维材料的设计提供了指导,具有这种独特结构和优异电化学性能的KTi-400@CNFs复合材料在下一代储能领域具有巨大潜力。
本文的补充材料可在10.1007/s40843-022-2268-9获取,授权用户可访问。