Shi Huanhuan, Zhang Panpan, Liu Zaichun, Park SangWook, Lohe Martin R, Wu Yuping, Shaygan Nia Ali, Yang Sheng, Feng Xinliang
Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
School of Energy Science and Engineering and Institute for Advanced Materials, Nanjing Tech University, Nanjing, 211816, Jiangsu Province, China.
Angew Chem Int Ed Engl. 2021 Apr 12;60(16):8689-8693. doi: 10.1002/anie.202015627. Epub 2021 Mar 10.
MXene (e.g., Ti C ) represents an important class of two-dimensional (2D) materials owing to its unique metallic conductivity and tunable surface chemistry. However, the mainstream synthetic methods rely on the chemical etching of MAX powders (e.g., Ti AlC ) using hazardous HF or alike, leading to MXene sheets with fluorine termination and poor ambient stability in colloidal dispersions. Here, we demonstrate a fluoride-free, iodine (I ) assisted etching route for preparing 2D MXene (Ti C T , T=O, OH) with oxygen-rich terminal groups and intact lattice structure. More than 71 % of sheets are thinner than 5 nm with an average size of 1.8 μm. They present excellent thin-film conductivity of 1250 S cm and great ambient stability in water for at least 2 weeks. 2D MXene sheets with abundant oxygen surface groups are excellent electrode materials for supercapacitors, delivering a high gravimetric capacitance of 293 F g at a scan rate of 1 mV s , superior to those made from fluoride-based etchants (<290 F g at 1 mV s ). Our strategy provides a promising pathway for the facile and sustainable production of highly stable MXene materials.
MXene(例如Ti₃C₂)因其独特的金属导电性和可调节的表面化学性质而成为一类重要的二维(2D)材料。然而,主流的合成方法依赖于使用危险的HF或类似物质对MAX粉末(例如Ti₃AlC₂)进行化学蚀刻,导致生成具有氟端基且在胶体分散体中环境稳定性较差的MXene薄片。在此,我们展示了一种无氟、碘(I₂)辅助的蚀刻路线,用于制备具有富氧端基和完整晶格结构的二维MXene(Ti₃C₂Tₓ,T = O,OH)。超过71%的薄片厚度小于5nm,平均尺寸为1.8μm。它们具有1250 S cm⁻¹的优异薄膜导电性,并且在水中具有至少2周的良好环境稳定性。具有丰富氧表面基团的二维MXene薄片是超级电容器的优异电极材料,在扫描速率为1 mV s⁻¹时具有293 F g⁻¹的高比电容,优于由氟基蚀刻剂制备的材料(在1 mV s⁻¹时<290 F g⁻¹)。我们的策略为简便且可持续地生产高度稳定的MXene材料提供了一条有前景的途径。