Suppr超能文献

通过分析TARGET和TCGA数据库评估一个包含18个基因的基因panel在急性髓系白血病中的预后价值。

Prognostic value of an eighteen-genes panel in acute myeloid leukemia by analyzing TARGET and TCGA databases.

作者信息

Chen Panpan, Cao Jiaming, Chen Lingling, Gao Guanfei, Xu Yuanlin, Jia Peijun, Li Yan, Li Yating, Du Jiangfeng, Zhang Shijie, Zhang Jingxin

机构信息

School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.

The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China.

出版信息

Cancer Biomark. 2023;36(4):287-298. doi: 10.3233/CBM-220179.

Abstract

BACKGROUND

Acute myeloid leukemia (AML) has a poor prognosis, and the current 5-year survival rate is less than 30%.

OBJECTIVE

The present study was designed to identify the significant genes closely related to AML prognosis and predict the prognostic value by constructing a risk model based on their expression.

METHODS

Using bioinformatics (Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, univariate and multivariate Cox regression analysis, Kaplan-Meier survival analysis, and receiver operating characteristic (ROC) analysis) to identify a prognostic gene signature for AML. Finally, The Cancer Genome Atlas (TCGA) database was used to validate this prognostic signature.

RESULTS

Based on univariate and multivariate Cox regression analysis, eighteen prognostic genes were identified, and the gene signature and risk score model were constructed. Multivariate Cox analysis showed that the risk score was an independent prognostic factor [hazard ratio (HR) = 1.122, 95% confidence interval (CI) = 1.067-1.180, P< 0.001]. ROC analysis showed a high predictive value of the risk model with an area under the curve (AUC) of 0.705.

CONCLUSIONS

This study evaluated a potential prognostic signature with eighteen genes and constructed a risk model significantly related to the prognosis of AML patients.

摘要

背景

急性髓系白血病(AML)预后较差,目前的5年生存率低于30%。

目的

本研究旨在鉴定与AML预后密切相关的重要基因,并通过基于其表达构建风险模型来预测预后价值。

方法

利用生物信息学(基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路、单因素和多因素Cox回归分析、Kaplan-Meier生存分析以及受试者工作特征(ROC)分析)来鉴定AML的预后基因特征。最后,使用癌症基因组图谱(TCGA)数据库验证该预后特征。

结果

基于单因素和多因素Cox回归分析,鉴定出18个预后基因,并构建了基因特征和风险评分模型。多因素Cox分析表明,风险评分是一个独立的预后因素[风险比(HR)=1.122,95%置信区间(CI)=1.067 - 1.180,P<0.001]。ROC分析显示风险模型具有较高的预测价值,曲线下面积(AUC)为0.705。

结论

本研究评估了一个由18个基因组成的潜在预后特征,并构建了一个与AML患者预后显著相关的风险模型。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验