Chen Jingxiao, Wang Yufeng, Li Le, Miao Yue-E, Zhao Xu, Yan Xiu-Ping, Zhang Chao, Feng Wei, Liu Tianxi
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China.
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):16109-16117. doi: 10.1021/acsami.3c02243. Epub 2023 Mar 20.
The development of ultrastretchable ionogels with a combination of high transparency and unique waterproofness is central to the development of emerging skin-inspired sensors. In this study, an ultrastretchable semicrystalline fluorinated ionogel (SFIG) with visible-light transparency and underwater stability is prepared through one-pot copolymerization of acrylic acid and fluorinated acrylate monomers in a mixed solution of poly(ethylene oxide) (PEO) and fluorinated ionic liquids. Benefiting from the formation of the PEO-chain semicrystalline microstructures and the abundant noncovalent interactions (reversible hydrogen bonds and ion-dipole interactions) in an ionogel, SFIG is rendered with room-temperature stable cross-linking structures, providing high mechanical elasticity as well as high chain segment dynamics for self-healing and efficient energy absorption during the deformation. The resultant SFIG exhibits excellent stretchability (>2500%), improved mechanical toughness (7.4 MJ m), and room-temperature self-healability. Due to the high compatibility and abundance of hydrophobic fluorinated moieties in the ionogel, the SFIG demonstrates high visible-light transparency (>97%) and excellent waterproofness. Due to these unique advantages, the as-prepared SFIG is capable of working as an ultrastretchable ionic conductor in capacitive-type strain sensors, demonstrating excellent underwater strain-sensing performances with high sensitivity, large detecting range, and exceptional durability. This work might provide a straightforward and efficient method for obtaining waterproof ionogel elastomers for application in next-generation underwater sensors and communications.
开发兼具高透明度和独特防水性的超拉伸离子凝胶对于新型皮肤启发式传感器的发展至关重要。在本研究中,通过在聚环氧乙烷(PEO)和氟化离子液体的混合溶液中使丙烯酸和氟化丙烯酸酯单体进行一锅法共聚,制备了一种具有可见光透明度和水下稳定性的超拉伸半结晶氟化离子凝胶(SFIG)。得益于离子凝胶中PEO链半结晶微结构的形成以及丰富的非共价相互作用(可逆氢键和离子偶极相互作用),SFIG具有室温稳定的交联结构,提供了高机械弹性以及高链段动力学,以实现自我修复和在变形过程中高效吸收能量。所得的SFIG表现出优异的拉伸性(>2500%)、改善的机械韧性(7.4 MJ m)和室温自愈合性。由于离子凝胶中疏水氟化部分的高相容性和丰富性,SFIG具有高可见光透明度(>97%)和优异的防水性。由于这些独特优势,所制备的SFIG能够在电容式应变传感器中作为超拉伸离子导体工作,展现出优异的水下应变传感性能,具有高灵敏度、大检测范围和出色的耐久性。这项工作可能为获得用于下一代水下传感器和通信的防水离子凝胶弹性体提供一种直接有效的方法。