Suppr超能文献

朝着将大脑特征作为行为基质稳健测量的统计验证方向努力。

Toward a statistical validation of brain signatures as robust measures of behavioral substrates.

机构信息

Department of Neurology, University of California, Davis, Davis, California, USA.

School of Psychological Science, University of Western Australia, Perth, Australia.

出版信息

Hum Brain Mapp. 2023 Jun 1;44(8):3094-3111. doi: 10.1002/hbm.26265. Epub 2023 Mar 20.

Abstract

The "brain signature of cognition" concept has garnered interest as a data-driven, exploratory approach to better understand key brain regions involved in specific cognitive functions, with the potential to maximally characterize brain substrates of behavioral outcomes. Previously we presented a method for computing signatures of episodic memory. However, to be a robust brain measure, the signature approach requires a rigorous validation of model performance across a variety of cohorts. Here we report validation results and provide an example of extending it to a second behavioral domain. In each of two discovery data cohorts, we derived regional brain gray matter thickness associations for two domains: neuropsychological and everyday cognition memory. We computed regional association to outcome in 40 randomly selected discovery subsets of size 400 in each cohort. We generated spatial overlap frequency maps and defined high-frequency regions as "consensus" signature masks. Using separate validation datasets, we evaluated replicability of cohort-based consensus model fits and explanatory power by comparing signature model fits with each other and with competing theory-based models. Spatial replications produced convergent consensus signature regions. Consensus signature model fits were highly correlated in 50 random subsets of each validation cohort, indicating high replicability. In comparisons over each full cohort, signature models outperformed other models. In this validation study, we produced signature models that replicated model fits to outcome and outperformed other commonly used measures. Signatures in two memory domains suggested strongly shared brain substrates. Robust brain signatures may therefore be achievable, yielding reliable and useful measures for modeling substrates of behavioral domains.

摘要

“认知的大脑特征”这一概念作为一种数据驱动的、探索性的方法引起了人们的兴趣,旨在更好地了解特定认知功能所涉及的关键大脑区域,从而最大程度地描述行为结果的大脑基质。我们之前提出了一种计算情节记忆特征的方法。然而,作为一种稳健的大脑测量方法,特征方法需要在各种队列中严格验证模型性能。在这里,我们报告了验证结果,并提供了将其扩展到第二个行为领域的示例。在两个发现数据队列中的每一个中,我们为两个领域(神经心理学和日常认知记忆)推导出了区域大脑灰质厚度的关联。我们在每个队列中随机选择的 400 个大小为 40 的发现子集上计算了与结果的区域关联。我们生成了空间重叠频率图,并将高频区域定义为“共识”特征掩模。使用单独的验证数据集,我们通过将特征模型拟合与彼此以及与竞争的基于理论的模型进行比较,评估了基于队列的共识模型拟合和解释能力的可重复性。空间复制产生了收敛的共识特征区域。在每个验证队列的 50 个随机子集中,共识特征模型拟合高度相关,表明可重复性高。在对每个完整队列的比较中,特征模型的表现优于其他模型。在这项验证研究中,我们生成了复制模型拟合结果并优于其他常用指标的特征模型。两个记忆领域的特征表明有强烈的共同大脑基质。因此,稳健的大脑特征可能是可以实现的,为行为领域的基质建模提供可靠且有用的指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2df4/10171525/f4b38f2a602f/HBM-44-3094-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验