文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

计算前药设计方法提高小分子 API 脂质体形成能力。

Computational Prodrug Design Methodology for Liposome Formulability Enhancement of Small-Molecule APIs.

机构信息

Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.

Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.

出版信息

Mol Pharm. 2023 Apr 3;20(4):2119-2127. doi: 10.1021/acs.molpharmaceut.2c01078. Epub 2023 Mar 20.


DOI:10.1021/acs.molpharmaceut.2c01078
PMID:36939094
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10074381/
Abstract

Encapsulation into liposomes is a formulation strategy that can improve efficacy and reduce side effects of active pharmaceutical ingredients (APIs) that exhibit poor biodistribution or pharmacokinetics when administered alone. However, many APIs are unsuitable for liposomal formulations intended for parenteral administration due to their inherent physicochemical properties─lipid bilayer permeability and water-lipid equilibrium partitioning coefficient. Too high permeability results in premature leakage from liposomes, while too low permeability means the API is not able to pass across biological barriers. There are several options for solving this issue: (i) change of the lipid bilayer composition, (ii) addition of a permeability enhancer, or (iii) modification of the chemical structure of the API to design a prodrug. The latter approach was taken in the present work, and the effect of small changes in the molecular structure of the API on its permeation rate across a lipidic bilayer was systematically explored utilizing computer simulations. An in silico methodology for prodrug design based on the COSMOperm approach has been proposed and applied to four APIs (abiraterone, cytarabine, 5-fluorouracil, and paliperidone). It is shown that the addition of aliphatic hydrocarbon chains via ester or amide bonds can render the molecule more lipophilic and increase its permeability by approximately 1 order of magnitude for each 2 carbon atoms added, while the formation of fructose adducts can provide a more hydrophilic character to the molecule and reduce its lipid partitioning. While partitioning was found to depend only on the size and type of the added group, permeability was found to depend also on the added group location. Overall, it has been shown that both permeability and lipid partitioning coefficient can be systematically shifted into the desired liposome formulability window by appropriate group contributions to the parental drug. This can significantly increase the portfolio of APIs for which liposome or lipid nanoparticle formulations become feasible.

摘要

脂质体包封是一种制剂策略,可以提高生物分布或药代动力学较差的活性药物成分 (API) 的疗效并降低其副作用。然而,由于其固有物理化学性质(脂质双层通透性和水-脂质平衡分配系数),许多 API 不适合用于注射用脂质体制剂。通透性过高会导致脂质体过早泄漏,而过低的通透性意味着 API 无法穿过生物屏障。解决这个问题有几种选择:(i)改变脂质双层组成,(ii)添加通透性增强剂,或 (iii)修饰 API 的化学结构以设计前药。在本工作中采用了后一种方法,并利用计算机模拟系统地研究了 API 分子结构的微小变化对其穿过脂质双层的渗透速率的影响。提出了一种基于 COSMOperm 方法的前药设计计算方法学,并将其应用于四种 API(阿比特龙、阿糖胞苷、5-氟尿嘧啶和帕利哌酮)。结果表明,通过酯或酰胺键添加脂肪族烃链可以使分子更亲脂,并使渗透性增加约 1 个数量级,每个添加的 2 个碳原子,而果糖加合物的形成可以使分子具有更亲水的性质并降低其脂质分配。虽然分配仅取决于添加基团的大小和类型,但渗透性也取决于添加基团的位置。总体而言,研究表明,通过适当的基团贡献,可将渗透性和脂质分配系数系统地转移到所需的脂质体可形成性窗口,从而大大增加可用于脂质体或脂质纳米粒制剂的 API 组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/49596100d45e/mp2c01078_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/9b8e07a990f4/mp2c01078_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/8d85549b78a0/mp2c01078_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/1e291f680c14/mp2c01078_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/6264a029d8bf/mp2c01078_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/8b5be556ec9e/mp2c01078_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/71b65f90054e/mp2c01078_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/49596100d45e/mp2c01078_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/9b8e07a990f4/mp2c01078_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/8d85549b78a0/mp2c01078_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/1e291f680c14/mp2c01078_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/6264a029d8bf/mp2c01078_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/8b5be556ec9e/mp2c01078_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/71b65f90054e/mp2c01078_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/10074381/49596100d45e/mp2c01078_0008.jpg

相似文献

[1]
Computational Prodrug Design Methodology for Liposome Formulability Enhancement of Small-Molecule APIs.

Mol Pharm. 2023-4-3

[2]
Influence of stabilizing components on the integrity of antitumor liposomes loaded with lipophilic prodrug in the bilayer.

Colloids Surf B Biointerfaces. 2018-3-1

[3]
Enhance the efficiency of 5-fluorouracil targeted delivery by using a prodrug approach as a novel strategy for prolonged circulation time and improved permeation.

Int J Pharm. 2019-7-2

[4]
Anticancer double lipid prodrugs: liposomal preparation and characterization.

J Liposome Res. 2011-3-26

[5]
A simple passive equilibration method for loading carboplatin into pre-formed liposomes incubated with ethanol as a temperature dependent permeability enhancer.

J Control Release. 2017-3-10

[6]
Corneal permeation of ganciclovir: mechanism of ganciclovir permeation enhancement by acyl ester prodrug design.

J Ocul Pharmacol Ther. 2002-12

[7]
Liposomal delivery of hydrophobic weak acids: enhancement of drug retention using a high intraliposomal pH.

J Pharm Sci. 2008-1

[8]
Liposome transport of hydrophobic drugs: gel phase lipid bilayer permeability and partitioning of the lactone form of a hydrophobic camptothecin, DB-67.

J Pharm Sci. 2008-1

[9]
A liposomal fluorescence assay to study permeation kinetics of drug-like weak bases across the lipid bilayer.

J Control Release. 2013-11-6

[10]
Prodrug approaches for the development of a long-acting drug delivery systems.

Adv Drug Deliv Rev. 2023-7

引用本文的文献

[1]
Local Chemotherapy of Skin Pre-Neoplastic Lesions and Malignancies from the Perspective of Current Pharmaceutics.

Pharmaceutics. 2025-8-1

[2]
Liposomal Formulations: A Recent Update.

Pharmaceutics. 2024-12-30

[3]
Liposomal Copermeation Assay Reveals Unexpected Membrane Interactions of Commonly Prescribed Drugs.

Mol Pharm. 2024-6-3

[4]
Enhancing Solubility and Bioefficacy of Stilbenes by Liposomal Encapsulation-The Case of Macasiamenene F.

ACS Omega. 2024-2-15

[5]
Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery.

Int J Mol Sci. 2023-12-29

[6]
Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development.

ACS Mater Au. 2023-8-21

[7]
Research progress of nanovaccine in anti-tumor immunotherapy.

Front Oncol. 2023-8-24

[8]
Viscoelasticity of Liposomal Dispersions.

Nanomaterials (Basel). 2023-8-15

本文引用的文献

[1]
Considerations in the developability of peptides for oral administration when formulated together with transient permeation enhancers.

Int J Pharm. 2022-11-25

[2]
An esterase-activatable prodrug formulated liposome strategy: potentiating the anticancer therapeutic efficacy and drug safety.

Nanoscale Adv. 2021-12-31

[3]
Rational design of a new cytarabine-based prodrug for highly efficient oral delivery of cytarabine.

RSC Adv. 2018-4-9

[4]
Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes.

Nat Commun. 2022-3-25

[5]
Ceramide liposomes for skin barrier recovery: A novel formulation based on natural skin lipids.

Int J Pharm. 2021-3-1

[6]
Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults.

Nature. 2020-8-12

[7]
An mRNA Vaccine against SARS-CoV-2 - Preliminary Report.

N Engl J Med. 2020-7-14

[8]
Recent advancements in liposome technology.

Adv Drug Deliv Rev. 2020

[9]
EMA Review of Daunorubicin and Cytarabine Encapsulated in Liposomes (Vyxeos, CPX-351) for the Treatment of Adults with Newly Diagnosed, Therapy-Related Acute Myeloid Leukemia or Acute Myeloid Leukemia with Myelodysplasia-Related Changes.

Oncologist. 2020-9

[10]
COSMO Mechanistic Prediction of Passive Membrane Permeability for Neutral Compounds and Ions and Its pH Dependence.

J Phys Chem B. 2020-4-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索