Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.; Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC V6T 1Z3, Canada..
Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
J Control Release. 2017 Apr 28;252:50-61. doi: 10.1016/j.jconrel.2017.03.010. Epub 2017 Mar 10.
A passive equilibration method which relies on addition of candidate drugs to pre-formed liposomes is described as an alternative method for preparing liposome encapsulated drugs. The method is simple, rapid and applicable to liposomes prepared with high (45mol%) or low (<20mol%) levels of cholesterol. Passive equilibration is performed in 4-steps: (i) formation of liposomes, (ii) addition of the candidate drug to the liposomes in combination with a permeability enhancing agent, (iii) incubation at a temperature that facilitates diffusion of the added compound across the lipid bilayer, and (iv) quenching the enhanced membrane permeability by reduction in temperature and/or removal of the permeabilization enhancer. The method is fully exemplified here using ethanol as the permeabilization enhancer and carboplatin (CBDCA) as the drug candidate. It is demonstrated that ethanol can be added to liposomes prepared with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and Cholesterol (Chol) (55:45mol ratio) in amounts up to 30% (v/v) with no change in liposome size, even when incubated at temperatures>60°C. Super-saturated solutions of CBDCA (40mg/mL) can be prepared at 70°C and these are stable in the presence of ethanol even when the temperature is reduced to <30°C. maximum CBDCA encapsulation is achieved within 1h after the CBDCA solution is added to pre-formed DSPC/Chol liposomes in the presence of 30% (v/v) ethanol at 60°C. When the pre-formed liposomes are mixed with ethanol (30% v/v) at or below 40°C, the encapsulation efficiency is reduced by an order of magnitude. The method was also applied to liposomes prepared from other compositions include a cholesterol free formulations (containing 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (DSPE-PEG)) and a low Chol (<20mol%) formulations prepared with the distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) DSPG)). The cytotoxic activity of CBDCA was unaffected when prepared in this manner and two of the resultant formulations exhibited good stability in vitro and in vivo. The cytotoxic activity of CBDCA was unaffected when prepared in this manner and the resultant formulations exhibited good stability in vitro and in vivo. Pharmacokinetics studies in CD-1 mice indicated that the resulting formulations increased the circulation half life of the associated CBDCA significantly (AUC of CBDCA=0.016μg·hr/mL; AUC of the DSPC/Chol CBDCA formulation=1014.0μg·hr/mL and AUC of the DSPC/DSPG/Chol CBDCA formulation=583.96μg·hr/mL). Preliminary efficacy studies in Rag-2M mice with established subcutaneous H1975 and U-251 tumors suggest that the therapeutic activity of CBDCA is improved when administered in liposomal formulations. The encapsulation method described here has not been disclosed previously and will have broad applications to drugs that would normally be encapsulated during liposome manufacturing.
一种依赖于将候选药物添加到预先形成的脂质体中的被动平衡方法被描述为制备包封药物的脂质体的替代方法。该方法简单、快速,适用于用高(45mol%)或低(<20mol%)胆固醇水平制备的脂质体。被动平衡分 4 步进行:(i)形成脂质体,(ii)将候选药物与通透性增强剂一起添加到脂质体中,(iii)在有利于添加化合物扩散穿过脂质双层的温度下孵育,以及(iv)通过降低温度和/或去除通透性增强剂来猝灭增强的膜通透性。本文通过使用乙醇作为通透性增强剂和卡铂(CBDCA)作为药物候选物充分说明了该方法。结果表明,乙醇可以添加到用 1,2-二硬脂酰-sn-甘油-3-磷酸胆碱(DSPC)和胆固醇(Chol)(55:45mol 比)制备的脂质体中,添加量高达 30%(v/v),而脂质体大小不变,即使在>60°C 的温度下孵育也是如此。超饱和 CBDCA(40mg/mL)溶液可在 70°C 下制备,并且当温度降至<30°C 时,即使存在乙醇,这些溶液也稳定。在 60°C 下,将 CBDCA 溶液添加到预先形成的 DSPC/Chol 脂质体中,存在 30%(v/v)乙醇时,CBDCA 的最大包封率在 1h 内达到。当预先形成的脂质体在 40°C 或更低温度下与乙醇(30%v/v)混合时,包封效率降低了一个数量级。该方法还应用于其他制剂的脂质体,包括无胆固醇制剂(含有 1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-N-[羧基(聚乙二醇)-2000](DSPE-PEG))和低胆固醇制剂(<20mol%)用二硬脂酰-sn-甘油-3-磷酸-(1'-rac-甘油)DSPG))。以这种方式制备的 CBDCA 的细胞毒性活性不受影响,两种制剂在体外和体内均表现出良好的稳定性。以这种方式制备的 CBDCA 的细胞毒性活性不受影响,并且所得制剂在体外和体内均表现出良好的稳定性。在 CD-1 小鼠中的药代动力学研究表明,所得制剂显著增加了相关 CBDCA 的循环半衰期(CBDCA 的 AUC=0.016μg·hr/mL;DSPC/Chol CBDCA 制剂的 AUC=1014.0μg·hr/mL,DSPC/DSPG/Chol CBDCA 制剂的 AUC=583.96μg·hr/mL)。在具有已建立的皮下 H1975 和 U-251 肿瘤的 Rag-2M 小鼠中的初步疗效研究表明,当以脂质体制剂给药时,CBDCA 的治疗活性得到改善。本文所述的包封方法以前未被公开,并且将广泛应用于通常在脂质体制备过程中包封的药物。
Biochim Biophys Acta. 2004-2-10
Biochim Biophys Acta. 2002-4-12
Eur J Pharm Biopharm. 2013-11
Adv Pharmacol Pharm Sci. 2024-11-22
Nanoscale Adv. 2021-11-23
Membranes (Basel). 2022-3-11
Nanomaterials (Basel). 2022-1-3