Suppr超能文献

便于获取的数据集合可改善神经肿瘤临床试验中的决策制定。

Accessible Data Collections for Improved Decision Making in Neuro-Oncology Clinical Trials.

机构信息

Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts.

Division of Biostatistics, University of Minnesota, Minnesota, Minnesota.

出版信息

Clin Cancer Res. 2023 Jun 13;29(12):2194-2198. doi: 10.1158/1078-0432.CCR-22-3524.

Abstract

Drug development can be associated with slow timelines, particularly for rare or difficult-to-treat solid tumors such as glioblastoma. The use of external data in the design and analysis of trials has attracted significant interest because it has the potential to improve the efficiency and precision of drug development. A recurring challenge in the use of external data for clinical trials, however, is the difficulty in accessing high-quality patient-level data. Academic research groups generally do not have access to suitable datasets to effectively leverage external data for planning and analyses of new clinical trials. Given the need for resources to enable investigators to benefit from existing data assets, we have developed the Glioblastoma External (GBM-X) Data Platform which will allow investigators in neuro-oncology to leverage our data collection and obtain analyses. GBM-X strives to provide an uncomplicated process to use external data, contextualize single-arm trials, and improve inference on treatment effects early in drug development. The platform is designed to welcome interested collaborators and integrate new data into the platform, with the expectation that the data collection can continue to grow and remain updated. With such features, GBM-X is designed to help to accelerate evaluation of therapies, to grow with collaborations, and to serve as a model to improve drug discovery for rare and difficult-to-treat tumors in oncology.

摘要

药物开发可能需要较长的时间,特别是对于胶质母细胞瘤等罕见或难以治疗的实体肿瘤。在试验的设计和分析中使用外部数据引起了极大的兴趣,因为它有可能提高药物开发的效率和精确性。然而,在临床试验中使用外部数据时,一个反复出现的挑战是难以获取高质量的患者水平数据。学术研究小组通常无法获得合适的数据集,无法有效地利用外部数据来规划和分析新的临床试验。鉴于需要资源使研究人员能够从现有数据资产中受益,我们开发了Glioblastoma External (GBM-X) 数据平台,该平台将使神经肿瘤学领域的研究人员能够利用我们的数据收集并获得分析结果。GBM-X 致力于提供一种简便的方法来使用外部数据,对单臂试验进行背景化处理,并在药物开发的早期阶段提高对治疗效果的推断。该平台旨在欢迎感兴趣的合作者并将新数据整合到平台中,预计数据收集将继续增长并保持更新。有了这些功能,GBM-X 旨在帮助加速治疗的评估,与合作共同成长,并为肿瘤学中罕见和难以治疗的肿瘤的药物发现提供模型。

相似文献

3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
5
Antiangiogenic therapy for high-grade glioma.高级别胶质瘤的抗血管生成治疗
Cochrane Database Syst Rev. 2014 Sep 22(9):CD008218. doi: 10.1002/14651858.CD008218.pub3.
6
Anti-angiogenic therapy for high-grade glioma.高级别胶质瘤的抗血管生成治疗。
Cochrane Database Syst Rev. 2018 Nov 22;11(11):CD008218. doi: 10.1002/14651858.CD008218.pub4.
9
Temozolomide for high grade glioma.替莫唑胺用于治疗高级别胶质瘤。
Cochrane Database Syst Rev. 2013 Apr 30;2013(4):CD007415. doi: 10.1002/14651858.CD007415.pub2.

本文引用的文献

2
10
Data Sharing at a Crossroads.数据共享处于十字路口。
N Engl J Med. 2016 Sep 22;375(12):1115-7. doi: 10.1056/NEJMp1608086.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验