Suppr超能文献

基于腔增强拉曼光谱的多气体检测,灵敏度可达亚百万分之一。

Multiple Gas Detection by Cavity-Enhanced Raman Spectroscopy with Sub-ppm Sensitivity.

作者信息

Yang Qing-Ying, Tan Yan, Qu Zi-Han, Sun Yu, Liu An-Wen, Hu Shui-Ming

机构信息

Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.

State Grid Hubei Electric Power Research Institute, Wuhan 430071, China.

出版信息

Anal Chem. 2023 Apr 4;95(13):5652-5660. doi: 10.1021/acs.analchem.2c05432. Epub 2023 Mar 20.

Abstract

Accurate and sensitive detection of multicomponent trace gases below the parts-per-million (ppm) level is needed in a variety of medical, industrial, and environmental applications. Raman spectroscopy can identify multiple molecules in the sample simultaneously and has excellent potential for fast diagnosis of various samples, but applications are often limited by its sensitivity. In this contribution, we report the development of a cavity-enhanced Raman spectroscopy instrument using a narrow-line width 532 nm laser locked with a high-finesse cavity through a Pound-Drever-Hall locking servo, which allows continuous measurement in a broad spectral range. An intracavity laser power of up to 1 kW was achieved with an incident laser power of about 240 mW, resulting in a significant enhancement of the Raman signal in the range of 200-5000 cm and a sub-ppm sensitivity for various molecules. The technique is applied in the detection of different samples, including ambient air, natural gas, and reference gas of sulfur hexafluoride, demonstrating its capability for the quantitative measurement of various trace components.

摘要

在各种医学、工业和环境应用中,需要准确、灵敏地检测百万分之一(ppm)水平以下的多组分痕量气体。拉曼光谱能够同时识别样品中的多种分子,在各种样品的快速诊断方面具有巨大潜力,但其应用常常受到灵敏度的限制。在本论文中,我们报道了一种腔增强拉曼光谱仪器的研制,该仪器使用通过庞德 - 德瑞弗 - 霍尔锁定伺服与高精细度腔锁定的窄线宽532 nm激光,这使得能够在宽光谱范围内进行连续测量。在约240 mW的入射激光功率下实现了高达1 kW的腔内激光功率,从而在200 - 5000 cm范围内显著增强了拉曼信号,并对各种分子具有亚ppm级的灵敏度。该技术应用于不同样品的检测,包括环境空气、天然气和六氟化硫参考气体,证明了其对各种痕量成分进行定量测量的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验