Suppr超能文献

基于机器学习的土壤微塑料潜在污染区域识别:以中国太湖地区为例。

Identification of potentially contaminated areas of soil microplastic based on machine learning: A case study in Taihu Lake region, China.

机构信息

School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China.

School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China.

出版信息

Sci Total Environ. 2023 Jun 15;877:162891. doi: 10.1016/j.scitotenv.2023.162891. Epub 2023 Mar 20.

Abstract

Soil microplastic (MP) pollution has recently become increasingly aggravated, with severe consequences being generated. Understanding the spatial distribution characteristics of soil MPs is an important prerequisite for protecting and controlling soil pollution. However, determining the spatial distribution of soil MPs through a large number of soil field sampling and laboratory test analyses is unrealistic. In this study, we compared the accuracy and applicability of different machine learning models for predicting the spatial distribution of soil MPs. The support vector machine regression model with radial basis function (RBF) as kernel function (SVR-RBF) has a high prediction accuracy (R = 0.8934). Among the six ensemble models, random forest (R = 0.9007) could better explain the significance of source and sink factors affecting the occurrence of soil MPs. Soil texture, population density, and MPs point of interest (MPs-POI) were the main source-sink factors affecting the occurrence of soil MPs. Furthermore, the accumulation of MPs in soil was significantly affected by human activity. The spatial distribution map of soil MP pollution in the study area was drawn based on the bivariate local Moran's I model of soil MP pollution and the normalized difference vegetation index (NDVI) variation trend. A total of 48.74 km of soil was in an area of serious MP pollution, mainly concentrated in urban soil. This study provides a hybrid framework that includes spatial distribution prediction of MPs, source-sink analysis, and pollution risk area identification, providing scientific and systematic methods and techniques for pollution management in other soil environments.

摘要

土壤微塑料(MP)污染问题日益严峻,造成了严重的后果。了解土壤 MPs 的空间分布特征是保护和控制土壤污染的重要前提。然而,通过大量的土壤野外采样和实验室测试分析来确定土壤 MPs 的空间分布是不现实的。在本研究中,我们比较了不同机器学习模型预测土壤 MPs 空间分布的准确性和适用性。核函数为径向基函数(RBF)的支持向量机回归模型(SVR-RBF)具有较高的预测精度(R=0.8934)。在六种集成模型中,随机森林(R=0.9007)可以更好地解释影响土壤 MPs 发生的源汇因素的重要性。土壤质地、人口密度和 MPs 兴趣点(MPs-POI)是影响土壤 MPs 发生的主要源汇因素。此外,人类活动显著影响了 MPs 在土壤中的积累。根据土壤 MP 污染的双变量局部 Moran's I 模型和归一化差异植被指数(NDVI)变化趋势,绘制了研究区土壤 MP 污染的空间分布图。共有 48.74 公里的土壤处于严重的 MP 污染区域,主要集中在城市土壤中。本研究提供了一个混合框架,包括 MPs 的空间分布预测、源汇分析和污染风险区域识别,为其他土壤环境的污染管理提供了科学系统的方法和技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验