Yang Liping, Guo Lu, Yan Dong, Wang Ye, Shen Ting, Li Dong-Sheng, Pam Mei Er, Shi Yumeng, Yang Hui Ying
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
ACS Nano. 2023 Apr 11;17(7):6754-6769. doi: 10.1021/acsnano.2c12703. Epub 2023 Mar 21.
Metal sulfide anodes have aroused much attention in potassium ion batteries (PIBs) owing to their high theoretical capacities, but the sluggish kinetics and inferior cycling performance caused by severe volumetric change and particle pulverization greatly hinder their further development. Herein, robust hollow structure design together with phase structure engineering endow (Bi-Sb)S@N-C anode with superior (de)potassiation kinetics and excellent electrochemical performances in PIBs. Specifically, X-ray diffraction combined with density functional theory calculations and X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy (TEM) analyses indicated a fresh reaction mechanism of (Bi-Sb)S anode with a distinctive multistep (de)potassiation route along (003) plane of (Bi,Sb) alloy thanks to the Bi-Sb phase regulation in (Bi-Sb)S anode, ensuring it with superior reaction kinetics. Moreover, TEM characterization revealed the advantages of the hollow nanostructure with carbon shell, facilitating fast ion transport kinetics and high tolerance of volume change as well as enabling the structural integrity of electrode material during (de)potassiation. As a result, the (Bi-Sb)S hollow nanocube with N-doped carbon shell ((Bi-Sb)S@N-C) delivers a high initial Coulombic efficiency of 66.3%, a great rate performance of 289 mAh g at 2.0 A g, and an ultralong cycling life (89% retention after 220 cycles at 0.1 A g and 85% retention after 1600 cycles at 2.0 A g) in PIBs. Furthermore, the full cell of (Bi-Sb)S@N-C//PTCDA affords a high reversible capacity of 281 mA h g at 1.0 A g after 300 cycles. This work combines structural design and techniques, proving a successful nanostructure engineering strategy to rationalize alloy-type electrode materials for PIBs.
金属硫化物阳极因其高理论容量而在钾离子电池(PIB)中引起了广泛关注,但其严重的体积变化和颗粒粉碎导致的动力学迟缓及循环性能较差,极大地阻碍了它们的进一步发展。在此,坚固的中空结构设计与相结构工程赋予了(Bi-Sb)S@N-C阳极在PIB中优异的(脱)钾动力学和出色的电化学性能。具体而言,X射线衍射结合密度泛函理论计算以及X射线光电子能谱和高分辨率透射电子显微镜(TEM)分析表明,(Bi-Sb)S阳极具有独特的反应机制,由于(Bi-Sb)S阳极中的Bi-Sb相调控,沿着(Bi,Sb)合金的(003)平面有独特的多步(脱)钾途径,确保其具有优异的反应动力学。此外,TEM表征揭示了具有碳壳的中空纳米结构的优势,促进了快速的离子传输动力学和对体积变化的高耐受性,并在(脱)钾过程中保持电极材料的结构完整性。结果,具有N掺杂碳壳的(Bi-Sb)S中空纳米立方体((Bi-Sb)S@N-C)在PIB中提供了66.3%的高初始库仑效率、在2.0 A g下289 mAh g的出色倍率性能以及超长的循环寿命(在0.1 A g下220次循环后保留89%,在2.0 A g下1600次循环后保留85%)。此外,(Bi-Sb)S@N-C//PTCDA全电池在1.0 A g下300次循环后提供了281 mA h g的高可逆容量。这项工作结合了结构设计和技术,证明了一种成功的纳米结构工程策略,可使PIB的合金型电极材料合理化。