Chiu Chang-Yi, Lung Hui-Fang, Chou Wen-Chun, Lin Li-Yen, Chow Hong-Xuan, Kuo Yu-Hao, Chien Pei-Shan, Chiou Tzyy-Jen, Liu Tzu-Yin
Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan.
Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan.
Plant Cell Physiol. 2023 May 15;64(5):519-535. doi: 10.1093/pcp/pcad015.
Autophagy in plants is regulated by diverse signaling cascades in response to environmental changes. Fine-tuning of its activity is critical for the maintenance of cellular homeostasis under basal and stressed conditions. In this study, we compared the Arabidopsis autophagy-related (ATG) system transcriptionally under inorganic phosphate (Pi) deficiency versus nitrogen deficiency and showed that most ATG genes are only moderately upregulated by Pi starvation, with relatively stronger induction of AtATG8f and AtATG8h among the AtATG8 family. We found that Pi shortage increased the formation of GFP-ATG8f-labeled autophagic structures and the autophagic flux in the differential zone of the Arabidopsis root. However, the proteolytic cleavage of GFP-ATG8f and the vacuolar degradation of endogenous ATG8 proteins indicated that Pi limitation does not drastically alter the autophagic flux in the whole roots, implying a cell type-dependent regulation of autophagic activities. At the organismal level, the Arabidopsis atg mutants exhibited decreased shoot Pi concentrations and smaller meristem sizes under Pi sufficiency. Under Pi limitation, these mutants showed enhanced Pi uptake and impaired root cell division and expansion. Despite a reduced steady-state level of several PHOSPHATE TRANSPORTER 1s (PHT1s) in the atg root, cycloheximide treatment analysis suggested that the protein stability of PHT1;1/2/3 is comparable in the Pi-replete wild type and atg5-1. By contrast, the degradation of PHT1;1/2/3 is enhanced in the Pi-deplete atg5-1. Our findings reveal that both basal autophagy and Pi starvation-induced autophagy are required for the maintenance of Pi homeostasis and may modulate the expression of PHT1s through different mechanisms.
植物中的自噬受多种信号级联调控,以响应环境变化。对其活性的微调对于在基础和胁迫条件下维持细胞稳态至关重要。在本研究中,我们比较了拟南芥自噬相关(ATG)系统在无机磷(Pi)缺乏和氮缺乏条件下的转录情况,结果表明大多数ATG基因仅在Pi饥饿时适度上调,其中AtATG8家族中AtATG8f和AtATG8h的诱导相对较强。我们发现Pi短缺增加了拟南芥根差异区域中GFP-ATG8f标记的自噬结构的形成和自噬通量。然而,GFP-ATG8f的蛋白水解切割和内源性ATG8蛋白的液泡降解表明,Pi限制不会显著改变整个根中的自噬通量,这意味着自噬活性存在细胞类型依赖性调节。在生物体水平上,拟南芥atg突变体在Pi充足条件下地上部Pi浓度降低,分生组织尺寸减小。在Pi限制条件下,这些突变体表现出Pi吸收增强,但根细胞分裂和扩展受损。尽管atg根中几种磷酸盐转运蛋白1(PHT1s)的稳态水平降低,但环己酰亚胺处理分析表明,在Pi充足的野生型和atg5-1中,PHT1;1/2/3的蛋白质稳定性相当。相比之下,在Pi耗尽的atg5-1中,PHT1;1/2/3的降解增强。我们的研究结果表明,基础自噬和Pi饥饿诱导的自噬对于维持Pi稳态都是必需的,并且可能通过不同机制调节PHT1s的表达。