Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
Plant Physiol. 2011 Jul;156(3):1149-63. doi: 10.1104/pp.111.174805. Epub 2011 May 31.
Phosphorus (P) remobilization in plants is required for continuous growth and development. The Arabidopsis (Arabidopsis thaliana) inorganic phosphate (Pi) transporter Pht1;5 has been implicated in mobilizing stored Pi out of older leaves. In this study, we used a reverse genetics approach to study the role of Pht1;5 in Pi homeostasis. Under low-Pi conditions, Pht1;5 loss of function (pht1;5-1) resulted in reduced P allocation to shoots and elevated transcript levels for several Pi starvation-response genes. Under Pi-replete conditions, pht1;5-1 had higher shoot P content compared with the wild type but had reduced P content in roots. Constitutive overexpression of Pht1;5 had the opposite effect on P distribution: namely, lower P levels in shoots compared with the wild type but higher P content in roots. Pht1;5 overexpression also resulted in altered Pi remobilization, as evidenced by a greater than 2-fold increase in the accumulation of Pi in siliques, premature senescence, and an increase in transcript levels of genes involved in Pi scavenging. Furthermore, Pht1;5 overexpressors exhibited increased root hair formation and reduced primary root growth that could be rescued by the application of silver nitrate (ethylene perception inhibitor) or aminoethoxyvinylglycine (ethylene biosynthesis inhibitor), respectively. Together, these data indicate that Pht1;5 plays a critical role in mobilizing Pi from P source to sink organs in accordance with developmental cues and P status. The study also provides evidence for a link between Pi and ethylene signaling pathways.
磷(P)在植物中的再利用是持续生长和发育所必需的。拟南芥(Arabidopsis thaliana)无机磷(Pi)转运蛋白 Pht1;5 被认为在将储存的 Pi 从老叶中动员出来方面发挥作用。在这项研究中,我们使用反向遗传学方法研究了 Pht1;5 在 Pi 稳态中的作用。在低 Pi 条件下,Pht1;5 功能丧失(pht1;5-1)导致向地上部分分配的 P 减少,并且几种 Pi 饥饿响应基因的转录水平升高。在 Pi 充足的条件下,pht1;5-1 的地上部分 P 含量比野生型高,但根中的 P 含量较低。Pht1;5 的组成型过表达对 P 分布有相反的影响:与野生型相比,地上部分的 P 水平较低,但根中的 P 含量较高。Pht1;5 过表达也导致 Pi 再利用发生改变,表现在种荚中 Pi 积累增加超过 2 倍,衰老提前,以及参与 Pi 清除的基因的转录水平增加。此外,Pht1;5 过表达植株表现出根毛形成增加和主根生长减少,分别用硝酸银(乙烯感知抑制剂)或氨基乙氧基乙烯基甘氨酸(乙烯生物合成抑制剂)处理可以挽救这种现象。总之,这些数据表明 Pht1;5 根据发育线索和 P 状态在将 Pi 从 P 源动员到汇器官方面发挥关键作用。该研究还为 Pi 和乙烯信号通路之间的联系提供了证据。