Suppr超能文献

渗透压计

Osmometer

作者信息

Larkins Michael C., Zubair Muhammad, Thombare Aparna

机构信息

East Carolina University Brody School of Medicine

Pakistan Kidney & Liver Institute and Research Centre - PKLI

Abstract

An osmometer is a device used in clinical laboratories for measuring the concentration of particles in a solution, known as the osmolar concentration. This quantity can be expressed as osmolality (in mmol/kg) or osmolarity (in mmol/L). Clinical laboratories typically measure osmolality, which is considered more precise as weight is temperature-independent. In laboratory analysis, a dissolved substance is referred to as a solute, and the substance in which the solute is dissolved is referred to as a solvent. A solute dissolved into a solvent creates a solution. The unit for osmolar concentration or osmolality is milliosmole (abbreviated mOsm or mOsmol). For nonelectrolytes, 1 mmol equals 1 mOsm, whereas for electrolytes, the number of particles in a solution depends on the electrolyte's dissociation. When a solute is dissolved into a solvent, 4 colligative properties of the solvent change. These properties include: Osmotic pressure. Vapor pressure. Boiling point. Freezing point. These properties are tied to osmolality and depend on the solution's number of solute particles. Dissolving a solute into a solvent generally increases the osmotic pressure and boiling point and decreases a solution's vapor pressure and freezing point. Although any of the 4 colligative properties could be used to determine the osmolality of a solution, technical limitations restrict the commercial measurement of osmolality to freezing point, vapor pressure, and membrane osmometers. The freezing point depression method is commonly employed in clinical laboratories due to its high accuracy and ease of execution.  The general principle of freezing point depression osmometers involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. For example, 1 mole of a dissolved solute reduces the freezing point of water by approximately 1.86 °C (~35.35 °F). Therefore, freezing and thawing a solution and comparing the relative change in freezing point to that of a pure solvent allows for determining the approximate number of moles of dissolved solute in a sample. In clinical laboratory analysis, most samples are in water-based aqueous solutions, and the reference for solutions is generally pure water. The setup of a freezing point depression osmometer includes a temperature-controlled bath to allow for sub-freezing temperatures, a thermistor probe connected to a Wheatstone bridge circuit to measure the temperature of a clinical sample, and a thermistor readout circuit, which represents a combination of a galvanometer and a potentiometer (see Circuit Diagram of an Osmometer). Although many osmometers are standalone tabletop devices, there are computerized, automatic, and handheld osmometers available (see Computerized Osmometer). Vapor pressure osmometers determine the osmolality of a solution by measuring the voltage difference between 2 thermistors. One thermistor is exposed to a sample solution, whereas the other is exposed to only the pure solvent corresponding to the sample solution. This method establishes a correlation between voltage and solute concentration, enabling the determination of the sample's osmolality. On the other hand, membrane osmometers measure the flow of solvent, often water, from a pure solvent container across a semipermeable membrane into a solution containing a solute and the same solvent. The flow across the semipermeable membrane can be measured as the osmotic pressure of a sample and is related to the concentration of solute in the sample solution. The semipermeable membrane in this device only allows the flow of solvent and blocks the flow of dissolved particles. These osmometers are limited in their application by the range of osmolality they can measure and the membrane material with which the semipermeable membrane can be made. Alternative methods to osmometers can be used to measure osmolality, including electrical conductivity and specific gravity. Specific gravity was utilized before osmometers were practical to measure the osmolality of urine, utilizing various instruments such as refractometers, which measure the refraction of light through a fluid, or hydrometers. The applicability and accuracy of these methods besides osmometry for determining a sample's osmolality depend on the specific method and the sample.

摘要

渗透压计是临床实验室用于测量溶液中颗粒浓度的设备,即渗透浓度。该数值可以用重量摩尔渗透压浓度(以毫摩尔/千克为单位)或渗透压(以毫摩尔/升为单位)表示。临床实验室通常测量重量摩尔渗透压浓度,因其重量与温度无关,所以被认为更精确。在实验室分析中,溶解的物质称为溶质,溶质溶解于其中的物质称为溶剂。溶质溶解于溶剂形成溶液。渗透浓度或重量摩尔渗透压浓度的单位是毫渗摩尔(缩写为mOsm或mOsmol)。对于非电解质,1毫摩尔等于1毫渗摩尔,而对于电解质,溶液中颗粒的数量取决于电解质的解离情况。当溶质溶解于溶剂时,溶剂的4种依数性会发生变化。这些性质包括:渗透压、蒸气压、沸点、冰点。这些性质与重量摩尔渗透压浓度相关,且取决于溶液中溶质颗粒的数量。将溶质溶解于溶剂通常会增加渗透压和沸点,降低溶液的蒸气压和冰点。虽然这4种依数性中的任何一种都可用于确定溶液的重量摩尔渗透压浓度,但技术限制使得商业测量重量摩尔渗透压浓度的方法仅限于冰点、蒸气压和膜渗透压计。由于其高精度和易于操作,冰点降低法在临床实验室中常用。冰点降低渗透压计的一般原理涉及溶液中溶解溶质的摩尔数与冰点变化之间的关系。例如,1摩尔溶解的溶质会使水的冰点降低约1.86℃(约35.35℉)。因此,对溶液进行冻融,并将冰点的相对变化与纯溶剂的冰点变化进行比较,就可以确定样品中溶解溶质的近似摩尔数。在临床实验室分析中,大多数样品是水基水溶液,溶液的参考标准通常是纯水。冰点降低渗透压计的设置包括一个温度可控的浴槽,以实现低于冰点的温度,一个连接到惠斯通电桥电路的热敏电阻探头,用于测量临床样品的温度,以及一个热敏电阻读出电路,它是检流计和电位计的组合(见渗透压计电路图)。虽然许多渗透压计是独立的台式设备,但也有计算机化、自动化和手持式渗透压计(见计算机化渗透压计)。蒸气压渗透压计通过测量两个热敏电阻之间的电压差来确定溶液的重量摩尔渗透压浓度。一个热敏电阻暴露于样品溶液,而另一个仅暴露于与样品溶液对应的纯溶剂。这种方法建立了电压与溶质浓度之间的相关性,从而能够确定样品的重量摩尔渗透压浓度。另一方面,膜渗透压计测量溶剂(通常是水)从纯溶剂容器通过半透膜流入含有溶质和相同溶剂的溶液的流量。通过半透膜的流量可以作为样品的渗透压进行测量,并且与样品溶液中溶质的浓度相关。该设备中的半透膜只允许溶剂流动,阻止溶解颗粒的流动。这些渗透压计的应用受到它们能够测量的重量摩尔渗透压浓度范围以及可用于制造半透膜的膜材料的限制。除了渗透压计之外,还可以使用其他方法来测量重量摩尔渗透压浓度,包括电导率和比重。在渗透压计实用之前,比重被用于测量尿液的重量摩尔渗透压浓度,使用各种仪器,如测量光通过液体折射的折射计或比重计。除了渗透压测定法之外,这些方法在确定样品重量摩尔渗透压浓度方面的适用性和准确性取决于具体方法和样品。

相似文献

2
Fast membrane osmometer as alternative to freezing point and vapor pressure osmometry.
Anal Chem. 2008 Apr 1;80(7):2617-22. doi: 10.1021/ac7023987. Epub 2008 Mar 4.
6
Use of a vapor pressure osmometer to measure brain osmolality.
J Neurosci Methods. 1980 Oct;3(1):21-35. doi: 10.1016/0165-0270(80)90031-x.
7
Osmotic effects of polyethylene glycol.
Gastroenterology. 1988 Apr;94(4):933-41. doi: 10.1016/0016-5085(88)90550-1.
8
In situ osmometry: validation and effect of sample collection technique.
Optom Vis Sci. 2013 Apr;90(4):359-65. doi: 10.1097/OPX.0b013e31828aaf10.
9
Lack of Agreement among Electrical Impedance and Freezing-Point Osmometers.
Optom Vis Sci. 2016 May;93(5):482-7. doi: 10.1097/OPX.0000000000000817.
10
Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
Cell Biochem Biophys. 2005;42(3):277-345. doi: 10.1385/CBB:42:3:277.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验