Institute for Health Research, Kaiser Permanente Colorado, P.O. Box 378066, Denver, CO, 80237-8066, USA.
Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA.
J Gen Intern Med. 2023 Sep;38(12):2678-2685. doi: 10.1007/s11606-023-08149-9. Epub 2023 Mar 21.
Clinical opioid overdose risk prediction models can be useful tools to reduce the risk of overdose in patients prescribed long-term opioid therapy (LTOT). However, evolving overdose risk environments and clinical practices in addition to potential harmful model misapplications require careful assessment prior to widespread implementation into clinical care. Models may need to be tailored to meet local clinical operational needs and intended applications in practice.
To update and validate an existing opioid overdose risk model, the Kaiser Permanente Colorado Opioid Overdose (KPCOOR) Model, in patients prescribed LTOT for implementation in clinical care.
DESIGN, SETTING, AND PARTICIPANTS: The retrospective cohort study consisted of 33, 625 patients prescribed LTOT between January 2015 and June 2019 at Kaiser Permanente Colorado, with follow-up through June 2021.
The outcome consisted of fatal opioid overdoses identified from vital records and non-fatal opioid overdoses from emergency department and inpatient settings. Predictors included demographics, medication dispensings, substance use disorder history, mental health history, and medical diagnoses. Cox proportional hazards regressions were used to model 2-year overdose risk.
During follow-up, 65 incident opioid overdoses were observed (111.4 overdoses per 100,000 person-years) in the study cohort, of which 11 were fatal. The optimal risk model needed to risk-stratify patients and to be easily interpreted by clinicians. The original 5-variable model re-validated on the new study cohort had a bootstrap-corrected C-statistic of 0.73 (95% CI, 0.64-0.85) compared to a C-statistic of 0.80 (95% CI, 0.70-0.88) in the updated model and 0.77 (95% CI, 0.66-0.87) in the final adapted 7-variable model, which was also well-calibrated.
Updating and adapting predictors for opioid overdose in the KPCOOR Model with input from clinical partners resulted in a parsimonious and clinically relevant model that was poised for integration in clinical care.
临床阿片类药物过量风险预测模型可以作为减少长期阿片类药物治疗(LTOT)患者药物过量风险的有用工具。然而,不断变化的药物过量风险环境和临床实践,以及潜在的有害模型误用,需要在广泛应用于临床护理之前进行仔细评估。模型可能需要根据当地的临床操作需求和实践中的预期应用进行调整。
更新和验证现有的阿片类药物过量风险模型,即 Kaiser Permanente Colorado 阿片类药物过量(KPCOOR)模型,以用于 LTOT 患者的临床护理实施。
设计、设置和参与者:这项回顾性队列研究包括 2015 年 1 月至 2019 年 6 月期间在 Kaiser Permanente Colorado 接受 LTOT 的 33625 名患者,随访至 2021 年 6 月。
结局包括从生命记录中确定的致命阿片类药物过量和从急诊和住院环境中确定的非致命阿片类药物过量。预测因素包括人口统计学特征、药物配给、物质使用障碍史、心理健康史和医疗诊断。Cox 比例风险回归用于对 2 年药物过量风险进行建模。
在随访期间,研究队列中观察到 65 例新发阿片类药物过量事件(每 100000 人年 111.4 例过量),其中 11 例是致命的。该最佳风险模型需要对患者进行风险分层,并易于临床医生解释。重新在新研究队列中验证的原始 5 变量模型的 bootstrap 校正 C 统计量为 0.73(95%CI,0.64-0.85),而更新模型的 C 统计量为 0.80(95%CI,0.70-0.88),最终的 7 变量适应性模型的 C 统计量为 0.77(95%CI,0.66-0.87),且校准效果良好。
与临床合作伙伴合作,对 KPCOOR 模型中的阿片类药物过量预测因素进行更新和调整,生成了一个简洁且具有临床相关性的模型,为整合到临床护理中做好了准备。