Suppr超能文献

使用无人机和计算机视觉量化群居动物的运动、行为和环境背景。

Quantifying the movement, behaviour and environmental context of group-living animals using drones and computer vision.

机构信息

Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany.

Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.

出版信息

J Anim Ecol. 2023 Jul;92(7):1357-1371. doi: 10.1111/1365-2656.13904. Epub 2023 Mar 21.

Abstract

Methods for collecting animal behaviour data in natural environments, such as direct observation and biologging, are typically limited in spatiotemporal resolution, the number of animals that can be observed and information about animals' social and physical environments. Video imagery can capture rich information about animals and their environments, but image-based approaches are often impractical due to the challenges of processing large and complex multi-image datasets and transforming resulting data, such as animals' locations, into geographical coordinates. We demonstrate a new system for studying behaviour in the wild that uses drone-recorded videos and computer vision approaches to automatically track the location and body posture of free-roaming animals in georeferenced coordinates with high spatiotemporal resolution embedded in contemporaneous 3D landscape models of the surrounding area. We provide two worked examples in which we apply this approach to videos of gelada monkeys and multiple species of group-living African ungulates. We demonstrate how to track multiple animals simultaneously, classify individuals by species and age-sex class, estimate individuals' body postures (poses) and extract environmental features, including topography of the landscape and animal trails. By quantifying animal movement and posture while reconstructing a detailed 3D model of the landscape, our approach opens the door to studying the sensory ecology and decision-making of animals within their natural physical and social environments.

摘要

在自然环境中收集动物行为数据的方法,例如直接观察和生物遥测,通常在时空分辨率、可观察动物的数量以及有关动物社会和物理环境的信息方面受到限制。视频图像可以捕获有关动物及其环境的丰富信息,但基于图像的方法通常由于处理大型和复杂的多图像数据集以及将生成的数据(例如动物的位置)转换为地理坐标的挑战而不切实际。我们展示了一种新的系统,用于使用无人机记录的视频和计算机视觉方法来自动跟踪自由漫游动物的位置和身体姿势,并以高时空分辨率嵌入周围区域的同期 3D 景观模型中,以地理参考坐标表示。我们提供了两个示例,我们在其中将该方法应用于狒狒和多种群居非洲有蹄类动物的视频。我们演示了如何同时跟踪多个动物,按物种和年龄性别分类个体,估计个体的身体姿势(姿势)并提取环境特征,包括景观地形和动物踪迹。通过在重建景观的详细 3D 模型的同时量化动物的运动和姿势,我们的方法为研究动物在其自然物理和社会环境中的感觉生态学和决策打开了大门。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验