Suppr超能文献

使用深度学习算法进行片上细胞形态学分类的血液质量评估。

Blood quality evaluation on-chip classification of cell morphology using a deep learning algorithm.

作者信息

Yang Yuping, He Hong, Wang Junju, Chen Li, Xu Yi, Ge Chuang, Li Shunbo

机构信息

Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.

Chongqing College of Electronic Engineering, Chongqing 401331, China.

出版信息

Lab Chip. 2023 Apr 12;23(8):2113-2121. doi: 10.1039/d2lc01078j.

Abstract

The quality of red blood cells (RBCs) in stored blood has a direct impact on the recovery of patients treated by blood transfusion, which directly reflects the quality of blood. The traditional means for blood quality evaluation involve the use of reagents and multi-step and time-consuming operations. Here, a low-cost, multi-classification, label-free and high-precision method is developed, which combines microfluidic technology and a deep learning algorithm together to recognize and classify RBCs based on morphology. The microfluidic channel is designed to effectively and controllably solve the problem of cell overlap, which has a severe negative impact on the identification of cells. The object detection model in the deep learning algorithm is optimized and used to recognize multiple RBCs simultaneously in the whole field of view, so as to classify them into six morphological subcategories and count the numbers in each subgroup. The mean average precision of the developed object detection model reaches 89.24%. The blood quality can be evaluated by calculating the morphology index (MI) according to the numbers of cells in subgroups. The validation of the method is verified by evaluating three blood samples stored for 7 days, 21 days and 42 days, which have MIs of 84.53%, 73.33% and 24.34%, respectively, indicating good agreement with the actual blood quality. This method has the merits of cell identification in a wide channel, no need for single cell alignment as the image cytometry does and it is not only applicable to the quality evaluation of RBCs, but can also be used for general cell identifications with different morphologies.

摘要

储存血液中红细胞(RBC)的质量对接受输血治疗患者的恢复有直接影响,这直接反映了血液质量。传统的血液质量评估方法需要使用试剂,且操作步骤多、耗时。在此,开发了一种低成本、多分类、无标记且高精度的方法,该方法将微流控技术和深度学习算法相结合,基于形态对红细胞进行识别和分类。微流控通道的设计有效且可控地解决了细胞重叠问题,细胞重叠对细胞识别有严重负面影响。对深度学习算法中的目标检测模型进行优化,用于在整个视野中同时识别多个红细胞,从而将它们分为六个形态亚类并对每个亚组中的数量进行计数。所开发的目标检测模型的平均精度达到89.24%。通过根据亚组中细胞数量计算形态指数(MI)来评估血液质量。通过对储存7天、21天和42天的三个血液样本进行评估,验证了该方法,其MI分别为84.53%、73.33%和24.34%,表明与实际血液质量具有良好的一致性。该方法具有在宽通道中进行细胞识别的优点,无需像图像细胞术那样进行单细胞对齐,并且不仅适用于红细胞的质量评估,还可用于不同形态的一般细胞识别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验