Suppr超能文献

经紫外辐照显著提高环状烯烃共聚物电介质薄膜的高温电容储能性能

Significantly enhanced high-temperature capacitive energy storage in cyclic olefin copolymer dielectric films ultraviolet irradiation.

机构信息

Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China.

Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

出版信息

Mater Horiz. 2023 Jun 6;10(6):2120-2127. doi: 10.1039/d3mh00078h.

Abstract

Polymer dielectrics with high operation temperature (∼150 °C) and excellent capacitive energy storage performance are vital for electric power systems and advanced electronic devices. Here, a very convenient and competitive strategy by preparing ultraviolet-irradiated cyclic olefin copolymer films is demonstrated to be effective in improving the energy storage performance at high temperatures. Compared with the unirradiated film, irradiated films exhibit a higher dielectric constant, higher breakdown strength and stronger mechanical properties as a result of the emergence of the carbonyl group and cross-linking network. Consequently, with a high efficiency above 95%, a superior discharged energy density of ∼3.34 J cm is achieved at 150 °C, surpassing the current dielectric polymers and polymer nanocomposites. In particular, the energy storage performance remains highly reliable over 20 000 cycles under actual operating conditions (200 MV m at 150 °C) in hybrid electric vehicles. This research offers a valuable pathway to build high-energy-density polymer-based capacitor devices working under harsh environments.

摘要

具有高工作温度(约 150°C)和优异电容储能性能的聚合物电介质对于电力系统和先进电子设备至关重要。在这里,通过制备紫外辐照环烯烃共聚物薄膜,展示了一种非常方便且具有竞争力的策略,可有效提高高温下的储能性能。与未辐照的薄膜相比,辐照后的薄膜由于羰基和交联网络的出现,表现出更高的介电常数、更高的击穿强度和更强的机械性能。因此,在 150°C 下,效率超过 95%,可实现约 3.34 J cm 的优越放电能量密度,超过了目前的介电聚合物和聚合物纳米复合材料。特别是,在混合动力电动汽车的实际工作条件下(150°C 时为 200 MV m),经过 20000 次循环后,储能性能仍保持高度可靠。这项研究为在恶劣环境下工作的高能量密度基于聚合物的电容器设备提供了一条有价值的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验