Suppr超能文献

连接用于金属原子封装硅和锗笼状超原子的气相和凝聚相:组装超原子的电学性质

Bridging the gas and condensed phases for metal-atom encapsulating silicon- and germanium-cage superatoms: electrical properties of assembled superatoms.

作者信息

Yokoyama Takaho, Nakajima Atsushi

机构信息

Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

出版信息

Phys Chem Chem Phys. 2023 Apr 5;25(14):9738-9752. doi: 10.1039/d3cp00120b.

Abstract

With the development of nanocluster (NC) synthesis methods in the gas phase, atomically precise NCs composed of a finite number of metal and semiconductor atoms have emerged. NCs are expected to be the smallest units for nanomaterials with various functions, such as catalysts, optoelectronic materials, and electromagnetic devices. The exploration of a stable NC called a magic number NC has revealed a couple of important factors, such as a highly symmetric geometric structure and an electronic shell closure, and a magic number behavior is often enhanced by mixing additional elements. A synergetic effect between geometric and electronic structures leads to the formation of chemically robust NC units called superatoms (SAs), which act as individual units assembled as thin films. The agglomeration of non-ligated bare SAs is desirable in fabricating the assembled SAs associated with intrinsic SA nature. The recent development of an intensive pulsed magnetron sputtering method opens up the scalable synthesis of SAs in the gas phase, enabling the fabrication of SA assembly coupled with the non-destructive deposition of a soft-landing technique. This perspective describes our recent progress in the investigation of the formation of binary cage SA (BCSA) assembled thin films composed of metal-atom encapsulating silicon-cage SAs (M@Si) and germanium-cage SAs (M@Ge), with a focus on their electrical properties associated with a conduction mechanism toward the development of new functional nanoscale materials.

摘要

随着气相中纳米团簇(NC)合成方法的发展,由有限数量的金属和半导体原子组成的原子精确的NCs应运而生。NCs有望成为具有各种功能的纳米材料的最小单元,如催化剂、光电子材料和电磁器件。对一种称为幻数NC的稳定NC的探索揭示了几个重要因素,如高度对称的几何结构和电子壳层闭合,并且通过混合其他元素通常会增强幻数行为。几何结构和电子结构之间的协同效应导致形成称为超原子(SAs)的化学稳定的NC单元,这些超原子作为组装成薄膜的单个单元起作用。在制造与固有SA性质相关的组装SAs时,未连接的裸SAs的团聚是可取的。密集脉冲磁控溅射方法的最新发展开启了气相中SAs的可扩展合成,使得能够制造SA组装体,并结合软着陆技术的无损沉积。这篇综述描述了我们最近在研究由封装硅笼SAs(M@Si)和锗笼SAs(M@Ge)的金属原子组成的二元笼状SA(BCSA)组装薄膜的形成方面取得的进展,重点关注其与新功能纳米级材料开发的传导机制相关的电学性质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验