Department of Plant Biology, University of Georgia, Athens, Georgia.
Deparment of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California.
Curr Protoc. 2023 Mar;3(3):e705. doi: 10.1002/cpz1.705.
Promoters and the noncoding sequences that drive their function are fundamental aspects of genes that are critical to their regulation. The transcription preinitiation complex binds and assembles on promoters where it facilitates transcription. The transcription start site (TSS) is located downstream of the promoter sequence and is defined as the location in the genome where polymerase begins transcribing DNA into RNA. Knowing the location of TSSs is useful for annotation of genes, identification of non-coding sequences important to gene regulation, detection of alternative TSSs, and understanding of 5' UTR content. Several existing techniques make it possible to accurately identify TSSs, but are often difficult to perform experimentally, require large amounts of input RNA, or are unable to identify a large number of TSSs from a single sample. Many of these protocols take advantage of template switching reverse transcriptases (TSRTs), which reliably place an adaptor at the 5' end of a first strand synthesis of cDNA. Here, we introduce a protocol that exploits TSRT activity combined with rolling circle amplification to identify TSSs with several unique advantages over existing methods. Sequence adaptors are placed on the 5' and 3' end of the full-length cDNA copy of a transcript. A splint compatible with those adaptors is then used to circularize the full-length cDNA. Linear DNA containing concatemers of the cDNA are generated using rolling circle amplification, and a sequencing library is formed by fragmenting the concatemers. This protocol is straightforward to execute, requiring limited bench time with relatively stable reagents. Using extremely low amounts of RNA input, this protocol produces large numbers of accurate, deduplicated TSSs genome wide. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Splint generation Basic Protocol 2: RNA extraction Basic Protocol 3: cDNA synthesis Basic Protocol 4: cDNA circularization and amplification Basic Protocol 5: Library generation.
启动子及其驱动功能的非编码序列是基因的基本组成部分,对基因的调控至关重要。转录起始复合物结合并组装在启动子上,从而促进转录。转录起始位点(TSS)位于启动子序列的下游,定义为聚合酶将 DNA 转录成 RNA 的基因组中的位置。了解 TSS 的位置有助于注释基因、识别对基因调控重要的非编码序列、检测替代 TSS 以及理解 5'UTR 内容。现有的几种技术可以准确识别 TSS,但通常难以在实验中进行,需要大量的输入 RNA,或者无法从单个样本中识别大量的 TSS。许多这些方案都利用了模板转换逆转录酶(TSRT),它可以可靠地将接头放置在 cDNA 第一链合成的 5'端。在这里,我们介绍了一种利用 TSRT 活性结合滚环扩增来识别 TSS 的方案,该方案与现有的方法相比具有几个独特的优势。序列接头被放置在转录本全长 cDNA 的 5'和 3'端。然后,使用与这些接头兼容的短棒将全长 cDNA 环化。使用滚环扩增生成包含 cDNA 串联物的线性 DNA,并通过片段化串联物形成测序文库。该方案易于执行,所需的实验时间有限,且试剂相对稳定。使用极低量的 RNA 输入,该方案可在全基因组范围内产生大量准确且去重的 TSS。© 2023 作者。Wiley Periodicals LLC 出版的《当代协议》。基础方案 1:短棒生成基础方案 2:RNA 提取基础方案 3:cDNA 合成基础方案 4:cDNA 环化和扩增基础方案 5:文库生成。