Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
Biomolecular Dynamics, Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany.
Nano Lett. 2023 May 24;23(10):4111-4119. doi: 10.1021/acs.nanolett.2c04632. Epub 2023 Mar 22.
The effect of an externally applied directional force on molecular friction is so far poorly understood. Here, we study the force-driven dissociation of the ligand-protein complex biotin-streptavidin and identify anisotropic friction as a not yet described type of molecular friction. Using AFM-based stereographic single molecule force spectroscopy and targeted molecular dynamics simulations, we find that the rupture force and friction for biotin-streptavidin vary with the pulling angle. This observation holds true for friction extracted from Kramers' rate expression and by dissipation-corrected targeted molecular dynamics simulations based on Jarzynski's identity. We rule out ligand solvation and protein-internal friction as sources of the angle-dependent friction. Instead, we observe a heterogeneity in free energy barriers along an experimentally uncontrolled orientation parameter, which increases the rupture force variance and therefore the overall friction. We anticipate that anisotropic friction needs to be accounted for in a complete understanding of friction in biomolecular dynamics and anisotropic mechanical environments.
目前,对外加定向力对分子摩擦的影响知之甚少。在这里,我们研究了配体-蛋白质复合物生物素-链霉亲和素在外力驱动下的解离,并确定各向异性摩擦是一种尚未描述的分子摩擦类型。我们使用基于原子力显微镜的立体单分子力谱学和靶向分子动力学模拟,发现生物素-链霉亲和素的断裂力和摩擦力随拉伸角度而变化。这一观察结果适用于从克拉默斯速率表达式中提取的摩擦以及基于雅可比尼身份的耗散校正靶向分子动力学模拟的摩擦。我们排除了配体溶剂化和蛋白质内部摩擦作为角度相关摩擦的来源。相反,我们观察到沿着实验上不可控的取向参数的自由能势垒的不均匀性增加了断裂力的方差,从而增加了整体摩擦力。我们预计,各向异性摩擦需要在对生物分子动力学和各向异性力学环境中的摩擦的全面理解中得到考虑。