Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany; Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
Institute for Molecular Physiology (IMP), Microbiology and Biotechnology; Johannes Gutenberg-University, Mainz, Germany.
Adv Microb Physiol. 2023;82:267-299. doi: 10.1016/bs.ampbs.2022.10.002. Epub 2022 Dec 5.
C4-dicarboxylates (C4-DCs) such as fumarate, l-malate and l-aspartate are key substrates for Enterobacteria such as Escherichia coli or Salmonella typhimurium during anaerobic growth. In general, C4-DCs are oxidants during biosynthesis, e.g., of pyrimidine or heme, acceptors for redox balancing, a high-quality nitrogen source (l-aspartate) and electron acceptor for fumarate respiration. Fumarate reduction is required for efficient colonization of the murine intestine, even though the colon contains only small amounts of C4-DCs. However, fumarate can be produced endogenously by central metabolism, allowing autonomous production of an electron acceptor for biosynthesis and redox balancing. Bacteria possess a complex set of transporters for the uptake (DctA), antiport (DcuA, DcuB, TtdT) and excretion (DcuC) of C4-DCs. DctA and DcuB exert regulatory functions and link transport to metabolic control through interaction with regulatory proteins. The sensor kinase DcuS of the C4-DC two-component system DcuS-DcuR forms complexes with DctA (aerobic) or DcuB (anaerobic), representing the functional state of the sensor. Moreover, EIIA from the glucose phospho-transferase system binds to DctA and presumably inhibits C4-DC uptake. Overall, the function of fumarate as an oxidant in biosynthesis and redox balancing explains the pivotal role of fumarate reductase for intestinal colonization, while the role of fumarate in energy conservation (fumarate respiration) is of minor importance.
C4-二羧酸(C4-DC)如富马酸、苹果酸和天冬氨酸是大肠杆菌或鼠伤寒沙门氏菌等肠杆菌属在厌氧生长过程中的关键底物。一般来说,C4-DC 在生物合成过程中是氧化剂,例如嘧啶或血红素的合成,是氧化还原平衡的受体、高质量的氮源(天冬氨酸)和富马酸盐呼吸的电子受体。尽管结肠中只含有少量的 C4-DC,但富马酸盐还原对于鼠肠的有效定植是必需的。然而,中央代谢可以内源产生富马酸盐,允许自主生产生物合成和氧化还原平衡的电子受体。细菌拥有一套复杂的转运蛋白,用于摄取(DctA)、反向转运(DcuA、DcuB、TtdT)和排泄(DcuC)C4-DC。DctA 和 DcuB 发挥调节功能,并通过与调节蛋白的相互作用将运输与代谢控制联系起来。C4-DC 双组分系统 DcuS-DcuR 的传感器激酶 DcuS 与 DctA(需氧)或 DcuB(厌氧)形成复合物,代表传感器的功能状态。此外,葡萄糖磷酸转移酶系统的 EIIA 结合到 DctA 上,并可能抑制 C4-DC 的摄取。总的来说,富马酸盐作为生物合成和氧化还原平衡中的氧化剂的功能解释了富马酸盐还原酶对于肠道定植的关键作用,而富马酸盐在能量守恒(富马酸盐呼吸)中的作用则相对较小。