Demel Ondřej, Lecours Michael J, Nooijen Marcel
J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic.
University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
J Chem Phys. 2023 Mar 21;158(11):114120. doi: 10.1063/5.0135113.
We report further investigations to aid the development of a Laplace MP2 (second-order Møller Plesset) method with a range separated Coulomb potential partitioned into short- and long-range parts. The implementation of the method extensively uses sparse matrix algebra, density fitting techniques for the short-range part, and a Fourier transformation in spherical coordinates for the long-range part of the potential. Localized molecular orbitals are employed for the occupied space, whereas virtual space is described by orbital specific virtual orbitals (OSVs) associated with localized molecular orbitals. The Fourier transform is deficient for very large distances between localized occupied orbitals, and a multipole expansion for widely separated pairs is introduced for the direct MP2 contribution, which is applicable also to non-Coulombic potentials that do not satisfy the Laplace equation. For the exchange contribution, an efficient screening of contributing localized occupied pairs is employed, which is discussed more completely here. To mitigate errors due to the truncation of OSVs, a simple and efficient extrapolation procedure is used to obtain results close to MP2 for the full basis set of atomic orbitals Using a suitable set of default parameters, the accuracy of the approach is demonstrated. The current implementation of the approach is not very efficient, and the aim of this paper is to introduce and critically discuss ideas that can have more general applicability beyond MP2 calculations for large molecules.
我们报告了进一步的研究,以辅助开发一种拉普拉斯MP2(二阶莫勒-普列斯特定理)方法,该方法采用了一种将库仑势分为短程和长程部分的范围分离方案。该方法的实现广泛使用了稀疏矩阵代数、短程部分的密度拟合技术以及势的长程部分在球坐标下的傅里叶变换。对于占据空间采用定域分子轨道,而虚拟空间则由与定域分子轨道相关联的轨道特定虚拟轨道(OSV)来描述。对于定域占据轨道之间非常大的距离,傅里叶变换存在缺陷,因此针对直接MP2贡献引入了广泛分离对的多极展开,这也适用于不满足拉普拉斯方程的非库仑势。对于交换贡献,采用了对有贡献的定域占据对的有效筛选,本文对此进行了更全面的讨论。为了减轻由于OSV截断引起的误差,使用了一种简单有效的外推程序,以获得接近完整原子轨道基组的MP2结果。使用一组合适的默认参数,证明了该方法的准确性。该方法目前的实现效率不是很高,本文的目的是介绍并批判性地讨论一些想法,这些想法在大分子的MP2计算之外可能具有更广泛的适用性。