Suppr超能文献

基于模型的半竞争风险因果中介假设检验。

Model-based hypothesis tests for the causal mediation of semi-competing risks.

作者信息

Ho Yun-Lin, Hong Ju-Sheng, Huang Yen-Tsung

机构信息

Institute of Applied Mathematical Sciences, National Taiwan University, Taipei, Taiwan.

Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.

出版信息

Lifetime Data Anal. 2024 Jan;30(1):119-142. doi: 10.1007/s10985-023-09595-7. Epub 2023 Mar 22.

Abstract

Analyzing the causal mediation of semi-competing risks has become important in medical research. Semi-competing risks refers to a scenario wherein an intermediate event may be censored by a primary event but not vice versa. Causal mediation analyses decompose the effect of an exposure on the primary outcome into an indirect (mediation) effect: an effect mediated through a mediator, and a direct effect: an effect not through the mediator. Here we proposed a model-based testing procedure to examine the indirect effect of the exposure on the primary event through the intermediate event. Under the counterfactual outcome framework, we defined a causal mediation effect using counting process. To assess statistical evidence for the mediation effect, we proposed two tests: an intersection-union test (IUT) and a weighted log-rank test (WLR). The test statistic was developed from a semi-parametric estimator of the mediation effect using a Cox proportional hazards model for the primary event and a series of logistic regression models for the intermediate event. We built a connection between the IUT and WLR. Asymptotic properties of the two tests were derived, and the IUT was determined to be a size [Formula: see text] test and statistically more powerful than the WLR. In numerical simulations, both the model-based IUT and WLR can properly adjust for confounding covariates, and the Type I error rates of the proposed methods are well protected, with the IUT being more powerful than the WLR. Our methods demonstrate the strongly significant effects of hepatitis B or C on the risk of liver cancer mediated through liver cirrhosis incidence in a prospective cohort study. The proposed method is also applicable to surrogate endpoint analyses in clinical trials.

摘要

分析半竞争风险的因果中介在医学研究中变得愈发重要。半竞争风险是指一种情形,即中间事件可能被主要事件截尾,但反之则不然。因果中介分析将暴露因素对主要结局的效应分解为间接(中介)效应:通过中介因素介导的效应,以及直接效应:不通过中介因素的效应。在此,我们提出了一种基于模型的检验程序,以检验暴露因素通过中间事件对主要事件的间接效应。在反事实结局框架下,我们使用计数过程定义了因果中介效应。为了评估中介效应的统计证据,我们提出了两种检验:交并检验(IUT)和加权对数秩检验(WLR)。检验统计量是由中介效应的半参数估计量发展而来,主要事件使用Cox比例风险模型,中间事件使用一系列逻辑回归模型。我们建立了IUT和WLR之间的联系。推导了两种检验的渐近性质,并且确定IUT是一个水平为[公式:见原文]的检验,在统计上比WLR更具功效。在数值模拟中,基于模型的IUT和WLR都能适当地调整混杂协变量,并且所提出方法的I类错误率得到了很好的控制,IUT比WLR更具功效。在一项前瞻性队列研究中,我们的方法证明了乙型或丙型肝炎通过肝硬化发病率对肝癌风险具有显著的中介效应。所提出的方法也适用于临床试验中的替代终点分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验