德国医院内非药物干预对 COVID-19 动态的强度和时滞。

Intensity and lag-time of non-pharmaceutical interventions on COVID-19 dynamics in German hospitals.

机构信息

Laboratoire de Biomathématiques et d'Estimations Forestières, Université d'Abomey-Calavi, Cotonou, Benin.

Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.

出版信息

Front Public Health. 2023 Mar 6;11:1087580. doi: 10.3389/fpubh.2023.1087580. eCollection 2023.

Abstract

INTRODUCTION

Evaluating the potential effects of non-pharmaceutical interventions on COVID-19 dynamics is challenging and controversially discussed in the literature. The reasons are manifold, and some of them are as follows. First, interventions are strongly correlated, making a specific contribution difficult to disentangle; second, time trends (including SARS-CoV-2 variants, vaccination coverage and seasonality) influence the potential effects; third, interventions influence the different populations and dynamics with a time delay.

METHODS

In this article, we apply a distributed lag linear model on COVID-19 data from Germany from January 2020 to June 2022 to study intensity and lag time effects on the number of hospital patients and the number of prevalent intensive care patients diagnosed with polymerase chain reaction tests. We further discuss how the findings depend on the complexity of accounting for the seasonal trends.

RESULTS AND DISCUSSION

Our findings show that the first reducing effect of non-pharmaceutical interventions on the number of prevalent intensive care patients before vaccination can be expected not before a time lag of 5 days; the main effect is after a time lag of 10-15 days. In general, we denote that the number of hospital and prevalent intensive care patients decrease with an increase in the overall non-pharmaceutical interventions intensity with a time lag of 9 and 10 days. Finally, we emphasize a clear interpretation of the findings noting that a causal conclusion is challenging due to the lack of a suitable experimental study design.

摘要

引言

评估非药物干预措施对 COVID-19 动态的潜在影响具有挑战性,这在文献中存在争议。原因有很多,其中一些如下。首先,干预措施之间存在强烈的相关性,使得特定的贡献难以区分;其次,时间趋势(包括 SARS-CoV-2 变体、疫苗接种覆盖率和季节性)影响潜在影响;第三,干预措施以时间延迟的方式影响不同的人群和动态。

方法

在本文中,我们应用分布滞后线性模型对 2020 年 1 月至 2022 年 6 月德国的 COVID-19 数据进行研究,以研究强度和滞后时间对住院患者数量和经聚合酶链反应测试诊断的重症监护患者数量的影响。我们进一步讨论了这些发现如何取决于对季节性趋势进行复杂核算的程度。

结果与讨论

我们的研究结果表明,在接种疫苗之前,非药物干预措施对重症监护患者数量的首次减少作用预计不会早于 5 天的时间滞后;主要影响是在 10-15 天的时间滞后之后。总体而言,我们表示,随着总体非药物干预强度的增加,住院和重症监护患者的数量会减少,时间滞后为 9 天和 10 天。最后,我们强调要明确解释研究结果,指出由于缺乏合适的实验研究设计,因果关系的结论具有挑战性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5ed/10025539/c1d031f76ff7/fpubh-11-1087580-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索