Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
Adv Sci (Weinh). 2023 May;10(15):e2300841. doi: 10.1002/advs.202300841. Epub 2023 Mar 22.
There is an urgent need for cost-effective strategies to produce hydrogen from renewable net-zero carbon sources using renewable energies. In this context, the electrochemical hydrogen evolution reaction can be boosted by replacing the oxygen evolution reaction with the oxidation of small organic molecules, such as ethylene glycol (EG). EG is a particularly interesting organic liquid with two hydroxyl groups that can be transformed into a variety of C1 and C2 chemicals, depending on the catalyst and reaction conditions. Here, a catalyst is demonstrated for the selective EG oxidation reaction (EGOR) to formate on nickel selenide. The catalyst nanoparticle (NP) morphology and crystallographic phase are tuned to maximize its performance. The optimized NiS electrocatalyst requires just 1.395 V to drive a current density of 50 mA cm in 1 m potassium hydroxide (KOH) and 1 m EG. A combination of in situ electrochemical infrared absorption spectroscopy (IRAS) to monitor the electrocatalytic process and ex situ analysis of the electrolyte composition shows the main EGOR product is formate, with a Faradaic efficiency above 80%. Additionally, C2 chemicals such as glycolate and oxalate are detected and quantified as minor products. Density functional theory (DFT) calculations of the reaction process show the glycol-to-oxalate pathway to be favored via the glycolate formation, where the CC bond is broken and further electro-oxidized to formate.
从可再生净零碳源中使用可再生能源生产氢气的具有成本效益的策略是当务之急。在这种情况下,可以通过用小分子有机化合物(如乙二醇(EG))的氧化代替氧气的氧化来提高电化学析氢反应。EG 是一种特别有趣的具有两个羟基的有机液体,可以根据催化剂和反应条件转化为各种 C1 和 C2 化学品。在这里,展示了一种用于在硒化镍上选择性氧化乙二醇反应(EGOR)形成甲酸盐的催化剂。通过调整催化剂纳米颗粒(NP)的形态和结晶相来最大限度地提高其性能。优化后的 NiS 电催化剂在 1 m 氢氧化钾(KOH)和 1 m EG 中仅需 1.395 V 即可驱动 50 mA cm 的电流密度。原位电化学红外吸收光谱(IRAS)监测电催化过程和电解质成分的非原位分析相结合,表明主要的 EGOR 产物是甲酸盐,法拉第效率超过 80%。此外,还检测到并定量了少量的 C2 化学品,如乙醇酸盐和草酸。反应过程的密度泛函理论(DFT)计算表明,通过乙醇酸盐的形成,乙二醇到草酸的途径更有利,其中 C-C 键断裂并进一步电氧化形成甲酸盐。