Joy Jyothish, Ess Daniel H
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States.
J Am Chem Soc. 2023 Apr 5;145(13):7628-7637. doi: 10.1021/jacs.3c01196. Epub 2023 Mar 23.
The generally proposed mechanism for the reaction between non-heme Fe-oxo complexes and alkane C-H bonds involves a hydrogen atom transfer (HAT) reaction step with a radical pair intermediate that then has competitive radical rebound, dissociation, or desaturation pathways. Here, we report density functional theory-based quasiclassical direct dynamics trajectories that examine post-HAT reaction dynamics. Trajectories revealed that the radical pair intermediate can be a nonstatistical type intermediate without complete internal vibrational redistribution and post-HAT selectivity is generally determined by dynamic effects. Fast rebound trajectories occur through dynamic matching between the rotational motion of the newly formed Fe-OH bond and collision with the alkane radical, and all of this occurs through a nonsynchronous dynamically concerted process that circumvents the radical pair intermediate structure. For radical pair dissociation, trajectories proceeded to the radical pair intermediate for a very brief time, followed by complete dissociation. These trajectories provide a new viewpoint and model to understand the inherent reaction pathway selectivity for non-heme Fe-oxo-mediated C-H functionalization reactions.
非血红素铁氧配合物与烷烃碳氢键之间反应的一般提出机制涉及一个氢原子转移(HAT)反应步骤,该步骤会形成一个自由基对中间体,然后该中间体具有竞争性的自由基反弹、解离或去饱和途径。在此,我们报告基于密度泛函理论的准经典直接动力学轨迹,用于研究氢原子转移后的反应动力学。轨迹显示,自由基对中间体可以是一种非统计型中间体,没有完全的内部振动再分布,并且氢原子转移后的选择性通常由动力学效应决定。快速反弹轨迹是通过新形成的铁 - 氧氢键的旋转运动与烷烃自由基的碰撞之间的动态匹配而发生的,所有这些都通过一个非同步的动态协同过程发生,该过程绕过了自由基对中间体结构。对于自由基对解离,轨迹在极短时间内进入自由基对中间体,随后完全解离。这些轨迹为理解非血红素铁氧介导的碳氢键官能化反应的固有反应途径选择性提供了一个新的观点和模型。