Liu Hanyu, Vladár András E, Wang Peng-Peng, Ouyang Min
Department of Physics and Quantum Materials Center, University of Maryland, College Park, Maryland 20742, United States.
National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.
J Am Chem Soc. 2023 Apr 5;145(13):7495-7503. doi: 10.1021/jacs.3c00503. Epub 2023 Mar 23.
Understanding and controlling chirality in inorganic crystalline materials at the nanoscale is crucial in elucidating fundamental chirality-dependent physical and chemical processes as well as advancing new technological prospects, but significant challenges remain due to the lack of material control. Here, we have developed a facile and general bottom-up synthetic strategy for achieving chiral plasmonic Au nanostructures, including nanocubes and nanorods with fine chirality control. The underlying chiral mechanism enabled by the chiral boundary morphology is substantiated by theoretical modeling and finite element method (FEM) simulation. Because of the robustness of induced handedness and their small size, these as-synthesized chiral nanostructures can be further employed as building blocks toward the formation of complex chiral nanostructures. We have demonstrated a new class of chiral hybrid metal-semiconductor nanostructures that can allow integration of chirality with other properties and functionalities. All of these together have paved the way to engineer nanoscale inorganic chirality and thus study various emerging chirality-entangled effects with practical technological applications.
在纳米尺度上理解和控制无机晶体材料中的手性对于阐明基本的手性相关物理和化学过程以及推进新的技术前景至关重要,但由于缺乏材料控制,仍然存在重大挑战。在此,我们开发了一种简便通用的自下而上合成策略,用于制备手性等离子体金纳米结构,包括具有精细手性控制的纳米立方体和纳米棒。由手性边界形态实现的潜在手性机制通过理论建模和有限元方法(FEM)模拟得到证实。由于诱导手性的稳健性及其小尺寸,这些合成的手性纳米结构可进一步用作构建复杂手性纳米结构的基本单元。我们展示了一类新型的手性混合金属 - 半导体纳米结构,其能够将手性与其他性质和功能相结合。所有这些共同为设计纳米级无机手性铺平了道路,从而能够研究各种具有实际技术应用的新兴手性纠缠效应。