Kong Xiang-Tian, Besteiro Lucas V, Wang Zhiming, Govorov Alexander O
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA.
Adv Mater. 2020 Oct;32(41):e1801790. doi: 10.1002/adma.201801790. Epub 2018 Sep 9.
Nature is chiral, thus chirality is a key concept required to understand a multitude of systems in physics, chemistry, and biology. The field of optics offers valuable tools to probe the chirality of nanosystems, including the measurement of circular dichroism, the differential interaction strength between matter and circularly polarized light with opposite helicity. Simultaneously, the use of plasmonic systems with giant light-interaction cross-sections opens new paths to investigate and manipulate systems on the nanoscale. Consequently, the interest in chiral plasmonic and hybrid systems has continually grown in recent years, due to their potential applications in biosensing, polarization-encoded optical communication, polarization-selective chemical reactions, and materials with polarization-dependent light-matter interaction. Experimentally, chiral properties of nanostructures can be either created artificially using modern fabrication techniques involving inorganic materials, or borrowed from nature using bioassembly or biomolecular templating. Herein, the recent progress in the field of plasmonic chirality is summarized, with a focus on both the theoretical background and the experimental advances in the study of chirality in various systems, including molecular-plasmonic assemblies, chiral plasmonic nanostructures, chiral assemblies of interacting plasmonic nanoparticles, and chiral metal metasurfaces and metamaterials. The growth prospects of this field are also discussed.
自然界是手性的,因此手性是理解物理、化学和生物学中众多系统所需的关键概念。光学领域提供了有价值的工具来探测纳米系统的手性,包括圆二色性的测量,即物质与具有相反螺旋度的圆偏振光之间的差分相互作用强度。同时,具有巨大光相互作用横截面的等离子体系统的使用为在纳米尺度上研究和操纵系统开辟了新途径。因此,近年来对手性等离子体和混合系统的兴趣持续增长,这归因于它们在生物传感、偏振编码光通信、偏振选择性化学反应以及具有偏振依赖光-物质相互作用的材料等方面的潜在应用。在实验上,纳米结构的手性性质既可以使用涉及无机材料的现代制造技术人工创建,也可以利用生物组装或生物分子模板从自然界借鉴。在此,总结了等离子体手性领域的最新进展,重点关注各种系统中手性研究的理论背景和实验进展,包括分子-等离子体组装体、手性等离子体纳米结构、相互作用的等离子体纳米颗粒的手性组装体以及手性金属超表面和超材料。还讨论了该领域的发展前景。