Li Le, Mayer Robert J, Ofial Armin R, Mayr Herbert
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany.
CNRS, ISIS, Université de Strasbourg, 8 Allee Gaspard Monge, 67000 Strasbourg, France.
J Am Chem Soc. 2023 Apr 5;145(13):7416-7434. doi: 10.1021/jacs.2c13872. Epub 2023 Mar 23.
Diazoalkanes are ambiphilic 1,3-dipoles that undergo fast Huisgen cycloadditions with both electron-rich and electron-poor dipolarophiles but react slowly with alkenes of low polarity. Frontier molecular orbital (FMO) theory considering the 3-center-4-electron π-system of the propargyl fragment of diazoalkanes is commonly applied to rationalize these reactivity trends. However, we recently found that a change in the mechanism from cycloadditions to azo couplings takes place due to the existence of a previously overlooked lower-lying unoccupied molecular orbital. We now propose an alternative approach to analyze 1,3-dipolar cycloaddition reactions, which relies on the linear free energy relationship lg (20 °C) = ( + ) (eq 1) with two solvent-dependent parameters (, ) to characterize nucleophiles and one parameter () for electrophiles. Rate constants for the cycloadditions of diazoalkanes with dipolarophiles were measured and compared with those calculated for the formation of zwitterions by eq 1. The difference between experimental and predicted Gibbs energies of activation is interpreted as the energy of concert, i.e., the stabilization of the transition states by the concerted formation of two new bonds. By linking the plot of lg vs for nucleophilic dipolarophiles with that of lg vs for electrophilic dipolarophiles, one obtains V-shaped plots which provide absolute rate constants for the stepwise reactions on the borderlines. These plots furthermore predict relative reactivities of dipolarophiles in concerted, highly asynchronous cycloadditions more precisely than the classical correlations of rate constants with FMO energies or ionization potentials. DFT calculations using the SMD solvent model confirm these interpretations.
重氮烷是双亲性的1,3 -偶极体,能与富电子和亲电子的亲偶极体快速进行休斯根环加成反应,但与低极性烯烃反应缓慢。考虑到重氮烷炔丙基片段的3中心4电子π体系的前沿分子轨道(FMO)理论通常用于解释这些反应活性趋势。然而,我们最近发现,由于存在一个先前被忽视的较低未占据分子轨道,反应机理会从环加成转变为偶氮偶联。我们现在提出一种分析1,3 -偶极环加成反应的替代方法,该方法依赖于线性自由能关系lg (20 °C) = ( + ) (式1),其中有两个依赖于溶剂的参数(, )用于表征亲核试剂,一个参数()用于亲电试剂。测量了重氮烷与亲偶极体环加成反应的速率常数,并与通过式1计算的两性离子形成的速率常数进行比较。实验活化吉布斯自由能与预测值之间的差异被解释为协同能,即通过同时形成两个新键对过渡态的稳定作用。通过将亲核亲偶极体的lg 与 的关系图与亲电亲偶极体的lg 与 的关系图联系起来,可得到V形图,该图提供了边界线上逐步反应的绝对速率常数。这些图还比速率常数与FMO能量或电离势的经典相关性更精确地预测了协同、高度异步环加成反应中亲偶极体的相对反应活性。使用SMD溶剂模型的DFT计算证实了这些解释。